View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Second Law of Motion\nWhen a push meets mass, speed takes a new path.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Kick the Ball",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Force decides how fast the ball moves\nKicking a football is a push, or force, on the ball.\nThe bigger the force, the greater the change in the ball’s speed.\nKey Points:\nStrong kick → big force → ball accelerates quickly.\nGentle tap → small force → ball accelerates slowly.\nMore force means a larger change in motion.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": 1,
"text_description": "Momentum",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Momentum",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Momentum is the quantity of motion an object has. It equals mass times velocity: \\(p = m \\times v\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Which two factors decide an object’s momentum?",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Formula for Momentum",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "\\[p = m v\\]",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Variable Definitions\n\\(p\\)\nMomentum of the body (kg·m/s)\n\\(m\\)\nMass of the body (kg)\n\\(v\\)\nVelocity of the body (m/s)",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Applications\nCrash analysis\nEngineers compute momentum to design safer vehicles.\nSpace travel\nRocket scientists track momentum to plan thrust and orbits.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Newton’s Second Law",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Statement of the Law\nThe rate of change of momentum of an object is directly proportional to the applied force and acts in the force’s direction. For constant mass, \\(F = m\\,a\\).\nKey Characteristics:\nRelates force \\(F\\), mass \\(m\\) and acceleration \\(a\\).\nGreater force produces greater acceleration for the same mass.\nAcceleration occurs in the same direction as the applied force.\nExample:\nPushing a trolley harder makes it speed up faster, illustrating \\(F = m\\,a\\).",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Force vs Acceleration",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/FEU52RDlQ6hfbivc9ujVs7R4lQ4wtoScAB4WHW5w.png"
},
{
"fragment_index": 2,
"text_description": "Reading the straight line\nLook at the graph for a 1 kg cart.\nEvery point lies on one straight, rising line.\nThis shows force and acceleration rise together.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Points:\nStraight line ⇒ \\(F \\propto a\\) (linear relation).\nSlope equals mass; here slope = 1 kg.\nDoubling \\(F\\) doubles \\(a\\).",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": []
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Quick Check\nSubmit Answer\nCorrect!\nWell done! Newton’s second law says acceleration follows the applied force, so it is to the right.\nIncorrect\nNot quite. Newton’s second law states acceleration is in the direction of the net force applied.\nconst correctOption = 0;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('submitBtn');\n const feedbackCorrect = document.getElementById('feedbackCorrect');\n const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n\n let selectedOption = null;\n\n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n\n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n\n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Question\nWhen you pull a toy car to the right with a string, what is the direction of its acceleration?",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\nTo the right",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\nTo the left",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "3\nUpwards",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "4\nNo acceleration",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Hint:\nAcceleration points in the same direction as the net force applied.",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Recap: Momentum is mass multiplied by velocity.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Force causes a change in momentum—Newton’s Second Law.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "With constant mass, \\(F = m \\times a\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Final thought: Acceleration points in the direction of the applied force.",
"image_description": ""
}
]
}
]