View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Polynomials Adventure\nUnearth the rules that turn letters and numbers into powerful expressions.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Inside a Polynomial\nName each part\nA polynomial is a sum of terms. Each term has smaller parts you must recognise.\nKnowing these names lets you identify parts of any polynomial expression.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Each label shows a different part of the term.",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/WhM6Nd2Dv2SqPG6WJzoaunWyNticLLgNp5cWHde0.png"
},
{
"fragment_index": 2,
"text_description": "Key Points:\nCoefficient\n– the number multiplying the variable.\nVariable\n– the symbol that can change, such as \\(x\\) or \\(y\\).\nExponent\n– the power showing how many times the variable is used.\nConstant\n– a number without any variable.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Vocabulary",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Basic Terms",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Term: one separate part of a polynomial.\nVariable: letter that can change, e.g., \\(x\\).\nCoefficient: number multiplying the variable; \\(5\\) in \\(5x\\).\nExponent: power on the variable; \\(3\\) in \\(x^{3}\\).\nConstant: number without a variable.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Quick check: In \\(7x^{2}\\), the coefficient is 7.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Counting the Terms",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/pYKl19CON0Iswn4N5yHl34enmu8671AuqdCz3Gu0.png"
},
{
"fragment_index": 2,
"text_description": "Names based on number of terms\nA polynomial’s name tells how many unlike terms it has.\nMemorise these three common types.\nKey Points:\nMonomial – 1 term, e.g., \\(5x^2\\)\nBinomial – 2 terms, e.g., \\(3x + 4\\)\nTrinomial – 3 terms, e.g., \\(x^2 - 5x + 6\\)",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": 1,
"text_description": "Degree of a Polynomial",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Degree",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "The degree of a polynomial is the highest exponent of its variable. In \\(6x^{3}+2x^{2}+x\\), the highest exponent is 3, so the degree is 3.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "By Degree\nLinear, Quadratic, Cubic",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Notice how the examples change as the degree increases.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Name\nDegree\nGeneral Form\nExample\nLinear\n1\n\\(ax + b\\)\n\\(2x + 3\\)\nQuadratic\n2\n\\(ax^{2} + bx + c\\)\n\\(x^{2} - 4x + 1\\)\nCubic\n3\n\\(ax^{3} + bx^{2} + cx + d\\)\n\\(2x^{3} - 5x + 7\\)",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Evaluate Quickly",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nSubstitute\nReplace \\(x\\) with \\(2\\): \\(2(2)^2 + 3(2) + 1\\).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nSquare First\nCompute the power: \\(2^2 = 4\\). Now \\(2 \\times 4 + 3 \\times 2 + 1\\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nMultiply\nWork out the products: \\(8 + 6 + 1\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "4\nAdd Terms\nAdd the results: \\(8 + 6 + 1 = 15\\). Therefore \\(p(2)=15\\).",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Pro Tip:\nDo powers before multiplying and adding to avoid mistakes.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Multiple Choice Question\nSubmit Answer\nCorrect!\nGreat job! You correctly identified the polynomial’s degree.\nIncorrect\nReview the hint and try again.\nconst correctOption = 2;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('slide-08-a3f9kq-submitBtn');\n const feedbackCorrect = document.getElementById('slide-08-a3f9kq-feedbackCorrect');\n const feedbackIncorrect = document.getElementById('slide-08-a3f9kq-feedbackIncorrect');\n\n let selectedOption = null;\n\n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n\n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n\n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Question\nIdentify the degree of the polynomial \\(5x^{2}-4x+7\\).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\n0",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\n1",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "3\n2",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "4\n3",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Hint:\nThe degree equals the highest power of \\(x\\) present.",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "What We Learned\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/zEeZzNLfkQiCqjzirGpHYAAOFyVht8eL2AgDwBsH.png"
},
{
"fragment_index": 1,
"text_description": "A polynomial adds terms whose variables have whole-number exponents.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Each term has a coefficient, variable, exponent, and possible constant.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "By term count we name them monomial, binomial, or trinomial.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "The degree equals the highest exponent present.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Degrees 1, 2, and 3 are called linear, quadratic, and cubic.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Evaluate a polynomial by substituting a number for the variable.",
"image_description": ""
}
]
}
]