Transcript: permutations_20250910_080840.html

View and copy the extracted transcript JSON

Back to Files

Narration Generator

Generate narration from your transcript

Leave empty to use default narration settings. Use this to customize the narration approach.

[
  {
    "slide": 1,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Fun With Permutations\nEvery new order unlocks a fresh possibility!",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 2,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "What Is A Permutation?",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Permutation",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "An arrangement of objects where their order matters. Example: 1-2-3 and 3-2-1 are different permutations of the digits 1, 2, and 3.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 3,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Counting Quickly\nApplications",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "\\[n! = n \\times (n-1) \\times (n-2) \\times \\dots \\times 2 \\times 1\\]\nMultiply the remaining choices at each step to get the total.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Variable Definitions\n\\(n\\)\nnumber of distinct objects\n\\(n!\\)\ntotal different orders (permutations)",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Books on a Shelf\nHow many ways to line up \\(n\\) different books.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Race Results\nPossible finishing orders for \\(n\\) runners, each place different.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 4,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "Easy Example\nUse multiplication rule to count 3-digit codes.",
        "image_description": ""
      },
      {
        "fragment_index": -1,
        "text_description": "0-9\n0-9\n0-9\nEach wheel can show any digit 0 – 9.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Question\nHow many different 3-digit lock codes can be formed?",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "1st slot: 10 choices.\n2nd slot: 10 choices.\n3rd slot: 10 choices.\nMultiply: \\(10 \\times 10 \\times 10 = 1\\,000\\) codes.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Multiplication rule: total outcomes = product of choices for each position.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 5,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "No Repeats Example\nHow many 4-digit numbers have distinct digits?",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "1\nThousands place\n9 choices: digits 1–9. Zero can’t lead.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "2\nHundreds place\n9 remaining digits: 0–9 except the thousand digit.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "3\nTens place\n8 digits left.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "4\nUnits place\n7 digits left.",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "5\nMultiply choices\n\\(9\\times9\\times8\\times7 = 4\\,536\\) distinct 4-digit numbers.",
        "image_description": ""
      },
      {
        "fragment_index": 7,
        "text_description": "Outcome: You can now count arrangements when digits must be different.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 6,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Build A Permutation\nHands-on practice: Drag each coloured ball into the three spots, use each ball once, then read the permutation count.\nResults\n// Drag and drop functionality\n    const draggableItems = document.querySelectorAll('.draggable-item');\n    const dropZones = document.querySelectorAll('.drop-zone');\n    const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n    const feedbackArea = document.getElementById('feedbackArea');\n    const feedbackContent = document.getElementById('feedbackContent');\n\n    draggableItems.forEach(item => {\n      item.addEventListener('dragstart', handleDragStart);\n      item.addEventListener('dragend', handleDragEnd);\n    });\n\n    dropZones.forEach(zone => {\n      zone.addEventListener('dragover', handleDragOver);\n      zone.addEventListener('drop', handleDrop);\n      zone.addEventListener('dragenter', handleDragEnter);\n      zone.addEventListener('dragleave', handleDragLeave);\n    });\n\n    function handleDragStart(e) {\n      e.target.classList.add('opacity-50');\n      e.dataTransfer.setData('text/plain', e.target.dataset.id);\n    }\n\n    function handleDragEnd(e) {\n      e.target.classList.remove('opacity-50');\n    }\n\n    function handleDragOver(e) {\n      e.preventDefault();\n    }\n\n    function handleDragEnter(e) {\n      e.preventDefault();\n      e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n    }\n\n    function handleDragLeave(e) {\n      e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n    }\n\n    function handleDrop(e) {\n      e.preventDefault();\n      const dropZone = e.target.closest('.drop-zone');\n      dropZone.classList.remove('border-green-500', 'bg-green-50');\n\n      const itemId = e.dataTransfer.getData('text/plain');\n      const draggedItem = document.querySelector(`[data-id=\"\\${itemId}\"]`);\n\n      if (draggedItem && dropZone && !dropZone.contains(draggedItem)) {\n        dropZone.appendChild(draggedItem);\n        dropZone.querySelector('.text-center').style.display = 'none';\n      }\n    }\n\n    // Check answers functionality\n    checkAnswersBtn.addEventListener('click', () => {\n      const filledZones = Array.from(dropZones).filter(z => z.querySelector('.draggable-item')).length;\n      if (filledZones < 3) {\n        feedbackContent.innerHTML = '<p class=\"text-red-600\">Fill all three spots first.</p>';\n      } else {\n        feedbackContent.innerHTML = '<p class=\"text-green-600\">Great! You created one of the 24 possible permutations.</p>';\n      }\n      feedbackArea.classList.remove('hidden');\n    });",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Draggable Items\nRed\nBlue\nGreen\nYellow",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Drop Zones\n1st\n2nd\n3rd",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Tip:\nTry all possibilities, then multiply choices!",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Show count",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 7,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Key Takeaways\nThank You!\nYou now recall the core facts and are ready for harder problems.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Order matters: 12 and 21 are different.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "All different items: count with \\(n!\\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Fixed spots? Multiply the remaining choices one at a time.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "No repeats allowed: available choices drop each step.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Next Steps\nPrepare for tougher problems: try counting circular arrangements.",
        "image_description": ""
      }
    ]
  }
]