View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Kinetic Theory Kick-off\nSee the unseen dance of gas particles all around you.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": 1,
"text_description": "Atomic Hypothesis",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Molecular Nature of Matter",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "All matter consists of tiny atoms that are always moving. They attract at small separations and repel when squeezed together.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Core idea: constant atomic motion and forces explain the behaviour of all substances.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": 1,
"text_description": "Gas in Motion\nMolecular motion explains why gases fill any shape and flow easily.",
"image_description": ""
},
{
"fragment_index": -1,
"text_description": "Random, fast molecules collide with walls → pressure\nDiagram: Widely spaced molecules travel in straight lines and bounce elastically off walls and each other.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Key Ideas\nGas behaviour comes from how its molecules move.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Molecules are ~10 times farther apart than in solids—almost empty space.\nThey move randomly at high speeds in straight lines.\nElastic collisions with walls create pressure and let gas fill any container shape.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Tip: Higher temperature → faster molecules → greater collision rate and higher pressure.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Ideal Gas Law\nApplications",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "\\[P\\,V = \\mu R T\\]",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Variable Definitions",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "P\nPressure (Pa)",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "V\nVolume (m³)",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "µ\nAmount of gas (mol)",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "R\nGas constant 8.314 J mol⁻¹ K⁻¹",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "T\nTemperature (K)",
"image_description": ""
},
{
"fragment_index": 8,
"text_description": "Predict Volume Change\nEstimate how a gas expands when heated at constant pressure.",
"image_description": ""
},
{
"fragment_index": 9,
"text_description": "Find Moles of Gas\nUse measured P, V and T to calculate µ in experiments.",
"image_description": ""
},
{
"fragment_index": 10,
"text_description": "Design Pressurised Tanks\nDetermine safe storage pressure for a given temperature.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": 1,
"text_description": "Boyle’s Law Curve\nAt constant temperature, pressure decreases as volume increases.",
"image_description": ""
},
{
"fragment_index": -1,
"text_description": "Hyperbola for the gas law \\(PV = k\\) (fixed \\(T\\)).",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/KIOyh47kBgMAEK37nlFKHvPj1xa0nhQZ0umApJlT.png"
},
{
"fragment_index": 2,
"text_description": "Reading the graph\nThe curve visualises Boyle’s gas law and its inverse \\(P\\)-\\(V\\) link.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Gas law: \\(P \\propto \\frac{1}{V}\\) when temperature is constant.\nGraphical view: a downward-sloping hyperbola.\nMove along the curve: doubling \\(V\\) halves \\(P\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Tip: The product \\(PV\\) stays constant for any point on the curve.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": []
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Pressure from Motion\nWe derive \\(P = \\frac{1}{3} n m v^{2}\\) by translating molecular wall hits into measurable pressure.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nMomentum kick per hit\nA molecule mass \\(m\\) striking the wall reverses its \\(v_x\\): change in momentum \\(\\Delta p = 2 m v_x\\).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nHits per second\nNumber density \\(n\\) gives \\(n A L\\) molecules. Half move toward the wall, so hits per second \\(=\\frac{1}{2} n A v_x\\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nForce to pressure\nForce = \\(\\Delta p \\times\\) hit rate \\(= n m v_x^{2} A\\). Divide by area and average directions to get \\(P = \\frac{1}{3} n m v^{2}\\).",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Check Your Thinking\nSubmit Answer\nCorrect!\nPressure results from countless collisions that transfer momentum to the container walls.\nIncorrect\nRemember—gas pressure is due to molecular impacts, not charge, gravity, or volume alone.\nconst correctOption = 1;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('submitBtn');\n const feedbackCorrect = document.getElementById('feedbackCorrect');\n const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n\n let selectedOption = null;\n\n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n\n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n\n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Question\nWhich statement best explains why a gas exerts pressure on the walls of its container?",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\nGas molecules carry electric charge.\n2\nMolecules collide with the walls and rebound, changing momentum.\n3\nGravity pushes gas molecules outward.\n4\nGas molecules simply occupy a large volume.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Hint:\nFocus on what happens during each molecular collision with the wall.",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways – Recap\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Matter is made of discrete atoms or molecules.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Gas particles move randomly and continuously in all directions.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "\\(PV = nRT\\) links pressure, volume and temperature for a fixed amount of gas.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Microscopic motion explains pressure: \\(P = \\frac{1}{3} n m v^{2}\\).",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Boyle’s and Charles’ laws confirm kinetic theory experimentally.",
"image_description": ""
}
]
}
]