View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Kinetic Theory Unveiled\nFrom frantic particles to the calm laws they obey.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": 1,
"text_description": "Atomic Hypothesis",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Atoms in Perpetual Motion",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "All matter is made of tiny particles called atoms. These atoms move continuously, attract when slightly apart, and repel when forced together.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "19th-century chemist John Dalton first used this idea to explain gas laws. Quiz: choose Dalton, Maxwell, Einstein, or Feynman.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": 1,
"text_description": "Gas Molecules in Motion\nRandom motion and collisions build up gas pressure.",
"image_description": ""
},
{
"fragment_index": -1,
"text_description": "Diagram: Molecules travel straight, collide elastically, and hit walls to create pressure.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "What the image shows\nStraight-line motion is interrupted by collisions; wall hits transfer momentum as tiny pushes.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Molecular motion is random but constant.\nCollisions are elastic—speed changes, energy conserved.\nEach wall collision exerts force; many together give pressure \\(P\\).\nPressure formula: \\(P = \\frac{F}{A}\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Tip: Hotter gas → faster molecules → more frequent, harder hits → higher pressure.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Ideal Gas Equation",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "\\[PV = \\mu R T = k_B N T\\]",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Variable Definitions\n\\(P\\)\nPressure of gas\n\\(V\\)\nVolume of gas\n\\(\\mu\\)\nAmount of gas in moles\n\\(R\\)\nUniversal gas constant\n\\(T\\)\nAbsolute temperature (K)\n\\(k_B\\)\nBoltzmann constant\n\\(N\\)\nNumber of molecules",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Applications\nPredict Gas Behaviour\nFind new pressure or volume when a tyre heats up.\nCylinder Storage Design\nCalculate volume needed to store industrial gases safely.\nMicro-Macro Link\nRelate molecular count \\(N\\) to macroscopic \\(P\\) and \\(V\\).",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": 1,
"text_description": "Boyle’s Law Snapshot\nPressure × Volume = constant (temperature fixed)",
"image_description": ""
},
{
"fragment_index": -1,
"text_description": "Diagram: Compressing gas halves volume and doubles pressure.",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/vTbAQ66hgocCiMeEJkDYTn5DSbAIhUN2rLTQoKWp.png"
},
{
"fragment_index": 2,
"text_description": "What the image shows\nKeeping temperature steady, volume shrinks and pressure rises in exact inverse proportion.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Temperature \\(T\\) remains constant.\nVolume ↓ ⇒ molecules hit walls more often.\nLaw: \\(P \\propto \\frac{1}{V}\\) or \\(PV = k\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Tip: Double the volume and pressure halves—an easy way to spot Boyle’s Law in action.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": []
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Multiple Choice Question\nSubmit Answer\nCorrect!\nYes. Temperature reflects the average kinetic energy; molecules move faster as temperature rises.\nIncorrect\nRemember: the term “kinetic” means motion. Temperature is linked to molecular motion, not mass or volume.\nconst correctOption = 1; // 0-based index\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('slide-07-k6z3h8-submit');\n const feedbackCorrect = document.getElementById('slide-07-k6z3h8-feedback-correct');\n const feedbackIncorrect = document.getElementById('slide-07-k6z3h8-feedback-incorrect');\n\n let selectedOption = null;\n\n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n\n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n\n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Question\nThis concept check assesses your grasp of kinetic theory basics.\nAccording to the kinetic theory of gases, the temperature of a gas measures the ____ of its molecules.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\nPotential energy of molecules",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\nAverage kinetic energy of molecules",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "3\nTotal molecular mass",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "4\nVolume occupied by molecules",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Hint:\nThink about how fast the particles move when temperature increases.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": 1,
"text_description": "Kinetic Theory — Key Takeaways\nSix bullet reminders of the theory.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\nParticle model\nMatter consists of tiny, widely spaced particles.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\nConstant motion\nParticles move randomly and collide elastically.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "3\nTemperature link\nAverage kinetic energy is proportional to \\(T\\): \\(E_k=\\tfrac{3}{2}k_B T\\).",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "4\nPressure origin\nGas pressure results from particle impacts on container walls.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "5\nAbsolute zero\nAt 0 K (−273 °C) particle motion would theoretically stop.",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "6\nGas laws\nBoyle’s & Charles’s laws emerge naturally from the model.",
"image_description": ""
}
]
}
]