View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Kinetic Theory\nTiny particles, giant explanations.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Matter is Particles",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Atomic Hypothesis",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "All matter is made of tiny particles—atoms or molecules—that move nonstop, attract a little when apart, and repel when crowded.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Think of three everyday objects that must be built from such moving particles.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Ideal Gas Law",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "\\[P V = \\mu R T\\]\nThis single equation links a gas’s pressure, volume, moles and absolute temperature.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Variable Definitions\n\\(P\\)\nPressure of the gas (Pa)\n\\(V\\)\nVolume of the gas (m³)\n\\( \\mu \\)\nAmount of gas in moles\n\\(R\\)\nUniversal gas constant (8.31 J mol⁻¹ K⁻¹)\n\\(T\\)\nAbsolute temperature (K)",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Applications\nSolve Unknowns\nRearrange to find any missing variable in gas-law problems.\nTyre Pressure vs Heat\nPredict how driving warms tyres and raises pressure.\nLaboratory to STP\nConvert measured volumes to standard temperature and pressure.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Real vs Ideal",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/wOI72zVocxnK20Eh2JMjmF2VunndHJnhsINccIEs.png"
},
{
"fragment_index": 2,
"text_description": "Deviation Curves & Ideal Behaviour\nPlot of compressibility factor \\(Z\\) against pressure shows real-gas deviation curves.\nAt very low pressure and high temperature, the curve meets the straight ideal line \\(Z = 1\\), so the gas behaves ideally.\nKey Points:\nDeviation curve dips below ideal line: \\(Z < 1\\) due to attractive forces.\nCurve rejoins at low \\(P\\) & high \\(T\\) when forces and collision frequency drop.\nRise at high \\(P\\) (\\(Z > 1\\)) comes from finite molecular volume.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Boyle’s Law",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Follow these three quick steps to predict how pressure changes when volume changes at constant temperature.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\nState the Law\nAt constant \\(T\\), gas pressure is inversely proportional to volume: \\(P \\propto \\frac{1}{V}\\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\nChange the Volume\nHalve the volume: \\(V \\rightarrow \\frac{V}{2}\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "3\nPredict the Pressure\nBecause \\(P \\propto \\frac{1}{V}\\), halving \\(V\\) doubles the pressure: \\(P \\rightarrow 2P\\).",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Pro Tip:\nQuiz yourself: If the volume doubles instead, pressure drops to half. Why?",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": 1,
"text_description": "Pressure Explained",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/se6cLiiWIpAIWKWyrWMgFJsFihGEXtzzY3jcjVPV.png"
},
{
"fragment_index": 3,
"text_description": "From Collisions to Pressure\nGas molecules move randomly, making countless molecular collisions with the container walls.\nEach collision flips the molecule’s perpendicular velocity, delivering a tiny impulse to the wall.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Key Points:\nMomentum change \\( \\Delta p \\) on each hit gives the wall an impulse.\nMany impulses per second create a steady force \\( F \\).\nPressure \\( P = \\frac{F}{A} \\) links these wall hits to observable gas pressure.",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Temp = Kinetic Energy",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nMeasure Temperature (K)\nRecord gas temperature in kelvin to link it directly with energy.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nRelate KE to T\nUse \\( \\tfrac{1}{2} m v^{2} = \\tfrac{3}{2} k_{B} T \\); therefore \\( KE \\propto T \\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nInfer Molecular Speed\nHigher \\( T \\) raises \\( v^{2} \\); molecules move faster in hotter gas.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": []
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Multiple Choice Question\nQuestion\nIf the absolute temperature of an ideal gas triples, what happens to the root-mean-square speed of its molecules?\nSubmit Answer\nCorrect!\n\\(\\sqrt{3}v_{\\text{rms}}\\) follows because \\(v_{\\text{rms}} \\propto \\sqrt{T}\\). Good grasp of kinetic energy!\nIncorrect\nUse \\(v_{\\text{rms}} \\propto \\sqrt{T}\\); tripling \\(T\\) multiplies \\(v_{\\text{rms}}\\) by \\(\\sqrt{3}\\).\nconst correctOption = 2;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('submitBtn');\n const feedbackCorrect = document.getElementById('feedbackCorrect');\n const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n\n let selectedOption = null;\n\n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n\n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n\n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nRemains the same",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nBecomes three times",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\n\\(\\sqrt{3}\\) times the original value",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "4\nReduces to one-third",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Hint:\nRemember: \\(v_{\\text{rms}} \\propto \\sqrt{T}\\).",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Gas is a collection of randomly moving molecules.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Equation \\(PV = \\mu RT\\) links pressure, volume and absolute temperature.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Low pressure and high temperature give near-ideal behaviour.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Pressure arises from molecules hitting container walls.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Higher temperature means higher average molecular speed.",
"image_description": ""
}
]
}
]