View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Genes & Evolution\nUnlock the code that shapes every living story.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Gene = Trait Code",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Gene",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "A gene is a tiny segment of DNA that controls one trait, e.g., eye colour.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Remember: Gene = trait code stored in DNA.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": 1,
"text_description": "Alleles Make Variety",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Allele\nA specific version of the same gene that can produce alternate traits.\nKey Characteristics:\nAlleles occur in pairs, one from each parent.\nDominant allele (capital letter) masks the other.\nRecessive allele (small letter) shows only when dominant is absent.\nExample:\nTall (T) vs dwarf (t). Cross TT × tt → all F1 plants Tall (Tt); dominant T is expressed.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Mendel’s Single-Gene Test\nFollow each step of the monohybrid cross and notice the 3 : 1 phenotype ratio.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nParent (P) Generation\nPure Tall \\(TT\\) × pure Dwarf \\(tt\\).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nF1 Generation\nAll offspring Tall \\(Tt\\); Tall trait is dominant.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nSelf-cross\nF1 plants self-pollinate: \\(Tt × Tt\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "4\nF2 Phenotype Ratio\nResult: 3 Tall : 1 Dwarf — hallmark monohybrid ratio.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Pro Tip:\nA 3 : 1 F2 ratio reveals a single gene with complete dominance.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": []
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Linked Genes Move Together",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Figure: Yellow body & white eye genes pass together in most offspring.",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/ADdGSm7OipVJzb7wQpwEeMOkC7pbuucKatq1gae9.png"
},
{
"fragment_index": 2,
"text_description": "Concept of Linkage\nLinkage means genes placed close on the same chromosome usually pass to the next generation together.\nMorgan saw yellow body (y) and white eyes (w) stay together in 98.7 % of flies; only 1.3 % were recombinants.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Points:\nLinked genes travel as a pair during meiosis.\nParental types vastly outnumber recombinants.\nCloser genes ⇒ fewer crossovers.",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Check-in: Linkage\nQuestion\nIf two genes show 1 % recombination frequency, they are ____.\nSubmit Answer\nCorrect!\n1 % recombination means only 1 crossover per 100 gametes—genes are side-by-side and tightly linked.\nIncorrect\nVery low recombination suggests the genes remain together on the same chromosome—they are tightly linked.\nconst correctOption = 1; // 0-based index\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('slide-07-b7e3xk-submit');\n const feedbackCorrect = document.getElementById('slide-07-b7e3xk-feedback-correct');\n const feedbackIncorrect = document.getElementById('slide-07-b7e3xk-feedback-incorrect');\n\n let selectedOption = null;\n\n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n\n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n\n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "A\nfar apart",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "B\ntightly linked",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "C\non different chromosomes",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "D\nunlinked",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Hint:\nLower recombination % means the genes sit very close on one chromosome.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Mutation Shows Up\nSickle-cell example\nMutation is any change in the DNA sequence.\nIn sickle-cell anaemia, one base swap (A → T) in the β-globin gene occurs.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/C4UWowDgl8umYbQ1tDYLUMNpP84uswAKclWUnH8o.png"
},
{
"fragment_index": 2,
"text_description": "Key Points:\nDNA change: A → T at one spot.\nProtein change: Glu → Val in haemoglobin.\nCell change: Disc-shaped RBC → Sickle-shaped RBC.\nTiny DNA change causes a clear visible trait.",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "From DNA to Disease\nOne Point Mutation, Big Effect\nA single point mutation changes the DNA codon GAG to GUG.\nThis replaces Glutamic acid with Valine in the β-chain of haemoglobin, producing sickle-shaped red blood cells.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "DNA point mutation GAG→GUG in β-globin gene",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/OQ8jWYZMC7mXy4UReVF1pnJZUxgHe2cWQGv6Ga1B.png"
},
{
"fragment_index": 2,
"text_description": "Key Points:\nPoint mutation = single base change.\nDNA: GAG (Glu) → GUG (Val).\nValine makes β-globin stick, distorting RBCs.\nDistorted cells cause sickle-cell anaemia.",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nYou’ve met the basics!\nHover on any icon to replay that mini-segment.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Genes = DNA Units\nGenes are DNA sections that carry instructions for traits.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Alleles Bring Variety\nDifferent versions of a gene (alleles) create visible differences among individuals.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Mendel’s Laws Guide Inheritance\nSegregation and independent assortment predict how alleles pass to offspring.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Variation Arises by Change\nMutation and crossing-over introduce new allele combinations into populations.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Evolution Favors Advantage\nNatural selection retains alleles that improve survival, driving long-term change.",
"image_description": ""
}
]
}
]