Transcript: circle_20250701_094500.html

View and copy the extracted transcript JSON

Back to Files

Narration Generator

Generate narration from your transcript

Leave empty to use default narration settings. Use this to customize the narration approach.

[
  {
    "slide": 1,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "What is a Circle?",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Circle",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "A circle is the set of all points in a plane that are at the same fixed distance, called the radius, from a fixed point, the centre.\nCentre: fixed point. Radius: distance from centre to any point on the circle.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 2,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Arc vs Chord",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Curved arc and its straight chord",
        "image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-02.jpg?height=804&width=804&top_left_y=357&top_left_x=877"
      },
      {
        "fragment_index": 2,
        "text_description": "One curve, one straight line\nBoth share the same two boundary points, yet follow different paths.\nKey Points:\nArc – curved part of the circumference between two points.\nChord – straight line segment joining the same two points.\nEach chord slices off an arc; an arc is never straight.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 3,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Arc Length Formula",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Central angle θ marks the arc whose length we calculate.",
        "image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-03.jpg?height=804&width=1431&top_left_y=333&top_left_x=578"
      },
      {
        "fragment_index": 2,
        "text_description": "Finding the Length of an Arc\nAn arc is a part of the circle’s circumference.\nCompare its central angle \\( \\theta \\) (in degrees) with the full circle \\(360^\\circ\\) to compute length.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\n\\(\n              L = \\frac{\\theta}{360^\\circ} \\times 2\\pi r\n              \\)\n\\(\\frac{\\theta}{360^\\circ}\\) is the fraction of the whole circle.\nMeasure \\(r\\) and \\( \\theta \\), then substitute to find \\(L\\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 4,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Sectors of a Circle\nWhat is a Sector?",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Minor sector shaded",
        "image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-05.jpg?height=824&width=906&top_left_y=343&top_left_x=874"
      },
      {
        "fragment_index": 2,
        "text_description": "A sector is the part of a circle enclosed by two radii and the arc between them.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\nMinor sector: central angle < 180°, the smaller slice.\nMajor sector: central angle > 180°, the larger slice.\nBoth sectors together complete the circle.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 5,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Segments Explained",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Chord AB cuts the circle; the shaded area is the segment.",
        "image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-06.jpg?height=726&width=729&top_left_y=382&top_left_x=503"
      },
      {
        "fragment_index": 2,
        "text_description": "Segment of a Circle\nA segment is the region of a circle bounded by a chord and the arc it subtends.\nShade the space between the chord and arc to visualise the segment clearly.\nKey Points:\nChord = straight boundary.\nArc = curved boundary.\nMinor segment is smaller; major segment is larger.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 6,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "Area of Segment",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "\\[ A = \\tfrac{1}{2} r^{2} \\left( \\theta - \\sin \\theta \\right) \\]\nUse when finding segment area. θ must be in radians.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Variable Definitions\nA\nsegment area\nr\nradius of the circle\nθ\ncentral angle (radians)",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Applications\nExam Problems\nQuickly find the shaded part between a chord and arc.\nDesign & Engineering\nCalculate material removed by circular cut-outs.\nSource: circle-geometry-extended-myp.pdf",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 7,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "Angle at Centre",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "",
        "image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-09.jpg?height=671&width=658&top_left_y=413&top_left_x=535"
      },
      {
        "fragment_index": 3,
        "text_description": "Angle-at-Centre Theorem",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "In any circle, the angle at the centre is twice the angle at the circumference that subtends the same arc.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Key Points:\nCentral angle = \\(2 \\times\\) inscribed angle.\nBoth angles stand on the same arc.\nHelps find unknown angles quickly.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 8,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "Same Segment Angles",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Angles subtended by chord AB at C and D are equal.",
        "image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-10.jpg?height=684&width=1606&top_left_y=386&top_left_x=527"
      },
      {
        "fragment_index": 3,
        "text_description": "Equal angles from a chord",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "A chord forms identical angles at any two points on the same segment of the circle.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Key Points:\nBoth angles lie on the same side of the chord (same segment).\nNo measurement tools needed—the theorem guarantees equality.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 9,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Angle in Semicircle",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Diameter AB joined to point C creates a right angle at C.",
        "image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-11.jpg?height=678&width=657&top_left_y=403&top_left_x=515"
      },
      {
        "fragment_index": 2,
        "text_description": "Why always 90°?\nConnect the endpoints of a diameter to any point on the circle to form a triangle.\nThe angle opposite the diameter is always \\(90^{\\circ}\\); this is called the angle in a semicircle.\nKey Points:\nDiameter subtends a semicircle of \\(180^{\\circ}\\).\nAngle in a semicircle is half of \\(180^{\\circ}\\): \\(90^{\\circ}\\).\nIdentify right angles quickly in circle problems.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 10,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Bisecting a Chord\nPerpendicular Bisector of a Chord\nFrom centre O, drop a 90° line to chord AB; it meets AB at M.\nThis line is the perpendicular bisector of AB.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Perpendicular from centre O meets chord AB at right angle.",
        "image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-12.jpg?height=705&width=709&top_left_y=389&top_left_x=472"
      },
      {
        "fragment_index": 2,
        "text_description": "Key Points:\nOA = OB (radii).\nRight angle creates congruent triangles OAM and OBM.\nCongruent triangles give AM = MB, so the chord is bisected.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 11,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "Multiple Choice Question",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Question\nA chord subtends an angle of 35° at the circumference. What is the angle at the centre?",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "1\n35°",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "2\n70°",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "3\n140°",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "4\n90°",
        "image_description": ""
      },
      {
        "fragment_index": 7,
        "text_description": "Hint:\nFor any chord, the central angle is twice the angle at the circumference.",
        "image_description": ""
      },
      {
        "fragment_index": 8,
        "text_description": "Submit Answer",
        "image_description": ""
      },
      {
        "fragment_index": -1,
        "text_description": "Correct!\n70° is right. The angle at the centre is double the angle at the circumference.\nIncorrect\nCheck the angle-at-centre theorem and try again.\n// MCQ interaction logic\n        const correctOption = 1; // zero-based index for 70°\n        const answerCards = document.querySelectorAll('.answer-card');\n        const submitBtn = document.getElementById('submitBtn');\n        const feedbackCorrect = document.getElementById('feedbackCorrect');\n        const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n        \n        let selectedOption = null;\n        \n        answerCards.forEach((card, index) => {\n            card.addEventListener('click', () => {\n                answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n                card.classList.add('border-blue-500', 'bg-blue-50');\n                selectedOption = index;\n            });\n        });\n        \n        submitBtn.addEventListener('click', () => {\n            if (selectedOption === null) return;\n            \n            if (selectedOption === correctOption) {\n                feedbackCorrect.classList.remove('hidden');\n                feedbackIncorrect.classList.add('hidden');\n            } else {\n                feedbackIncorrect.classList.remove('hidden');\n                feedbackCorrect.classList.add('hidden');\n            }\n        });",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 12,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Match the Theorem\nDrag each theorem name onto its matching statement to test your recall.\nCheck Answers\nResults\n// Drag and drop functionality\n        const draggableItems = document.querySelectorAll('.draggable-item');\n        const dropZones = document.querySelectorAll('.drop-zone');\n        const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n        const feedbackArea = document.getElementById('feedbackArea');\n        const feedbackContent = document.getElementById('feedbackContent');\n        \n        draggableItems.forEach(item => {\n            item.addEventListener('dragstart', handleDragStart);\n            item.addEventListener('dragend', handleDragEnd);\n        });\n        \n        dropZones.forEach(zone => {\n            zone.addEventListener('dragover', handleDragOver);\n            zone.addEventListener('drop', handleDrop);\n            zone.addEventListener('dragenter', handleDragEnter);\n            zone.addEventListener('dragleave', handleDragLeave);\n        });\n        \n        function handleDragStart(e) {\n            e.target.classList.add('opacity-50');\n            e.dataTransfer.setData('text/plain', e.target.dataset.id);\n        }\n        \n        function handleDragEnd(e) {\n            e.target.classList.remove('opacity-50');\n        }\n        \n        function handleDragOver(e) {\n            e.preventDefault();\n        }\n        \n        function handleDragEnter(e) {\n            e.preventDefault();\n            e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n        }\n        \n        function handleDragLeave(e) {\n            e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n        }\n        \n        function handleDrop(e) {\n            e.preventDefault();\n            const dropZone = e.target.closest('.drop-zone');\n            dropZone.classList.remove('border-green-500', 'bg-green-50');\n            \n            const itemId = e.dataTransfer.getData('text/plain');\n            const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n            \n            if (draggedItem && dropZone) {\n                dropZone.appendChild(draggedItem);\n                dropZone.querySelector('.text-center').style.display = 'none';\n            }\n        }\n        \n        // Check answers functionality\n        checkAnswersBtn.addEventListener('click', () => {\n            const results = [];\n            dropZones.forEach(zone => {\n                const expected = zone.dataset.id.replace('zone-','');\n                const placedItem = zone.querySelector('.draggable-item');\n                if (placedItem) {\n                    results.push(placedItem.dataset.id === expected);\n                } else {\n                    results.push(false);\n                }\n            });\n            const allCorrect = results.every(r => r);\n            feedbackArea.classList.remove('hidden');\n            feedbackContent.innerHTML = allCorrect\n                ? '<p class=\"text-green-600 font-semibold\">Great job! All matches are correct.</p>'\n                : '<p class=\"text-red-600 font-semibold\">Some matches are incorrect. Try again!</p>';\n        });",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Draggable Items\nAngle at Centre\nSame Segment\nSemicircle\nBisecting Chord",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Drop Zones\nAngle at the centre is twice the angle at the circumference.\nAngles in the same segment are equal.\nAngle in a semicircle is 90°.\nA perpendicular from the centre to a chord bisects the chord.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Tip:\nPicture the circle diagrams in your mind before dropping the item.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 13,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Circle Essentials Recap\nThank You!\nYou can now summarise the key circle facts with confidence.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Radius, chord and arc are the three basic parts of a circle.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Arc length: \\( \\ell = 2\\pi r \\tfrac{\\theta}{360^\\circ} \\) (θ in degrees).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Sector area: \\(A=\\tfrac{\\theta}{360^\\circ}\\pi r^{2}\\); segment area: \\(A=\\tfrac{1}{2}r^{2}(\\theta-\\sin\\theta)\\).",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Angle at centre theorem: central angle is twice the angle on the circumference.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Same-segment angles are equal; angle in a semicircle is 90°.",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "Perpendicular from centre bisects a chord; tangents from one point are equal and meet radius at 90°.",
        "image_description": ""
      }
    ]
  }
]