Generate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "What is a Circle?",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Circle",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "A circle is the set of all points in a plane that are at the same fixed distance, called the radius, from a fixed point, the centre.\nCentre: fixed point. Radius: distance from centre to any point on the circle.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Arc vs Chord",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Curved arc and its straight chord",
"image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-02.jpg?height=804&width=804&top_left_y=357&top_left_x=877"
},
{
"fragment_index": 2,
"text_description": "One curve, one straight line\nBoth share the same two boundary points, yet follow different paths.\nKey Points:\nArc – curved part of the circumference between two points.\nChord – straight line segment joining the same two points.\nEach chord slices off an arc; an arc is never straight.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Arc Length Formula",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Central angle θ marks the arc whose length we calculate.",
"image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-03.jpg?height=804&width=1431&top_left_y=333&top_left_x=578"
},
{
"fragment_index": 2,
"text_description": "Finding the Length of an Arc\nAn arc is a part of the circle’s circumference.\nCompare its central angle \\( \\theta \\) (in degrees) with the full circle \\(360^\\circ\\) to compute length.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Points:\n\\(\n L = \\frac{\\theta}{360^\\circ} \\times 2\\pi r\n \\)\n\\(\\frac{\\theta}{360^\\circ}\\) is the fraction of the whole circle.\nMeasure \\(r\\) and \\( \\theta \\), then substitute to find \\(L\\).",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Sectors of a Circle\nWhat is a Sector?",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Minor sector shaded",
"image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-05.jpg?height=824&width=906&top_left_y=343&top_left_x=874"
},
{
"fragment_index": 2,
"text_description": "A sector is the part of a circle enclosed by two radii and the arc between them.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Points:\nMinor sector: central angle < 180°, the smaller slice.\nMajor sector: central angle > 180°, the larger slice.\nBoth sectors together complete the circle.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Segments Explained",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Chord AB cuts the circle; the shaded area is the segment.",
"image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-06.jpg?height=726&width=729&top_left_y=382&top_left_x=503"
},
{
"fragment_index": 2,
"text_description": "Segment of a Circle\nA segment is the region of a circle bounded by a chord and the arc it subtends.\nShade the space between the chord and arc to visualise the segment clearly.\nKey Points:\nChord = straight boundary.\nArc = curved boundary.\nMinor segment is smaller; major segment is larger.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": 1,
"text_description": "Area of Segment",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "\\[ A = \\tfrac{1}{2} r^{2} \\left( \\theta - \\sin \\theta \\right) \\]\nUse when finding segment area. θ must be in radians.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Variable Definitions\nA\nsegment area\nr\nradius of the circle\nθ\ncentral angle (radians)",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Applications\nExam Problems\nQuickly find the shaded part between a chord and arc.\nDesign & Engineering\nCalculate material removed by circular cut-outs.\nSource: circle-geometry-extended-myp.pdf",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": 1,
"text_description": "Angle at Centre",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "",
"image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-09.jpg?height=671&width=658&top_left_y=413&top_left_x=535"
},
{
"fragment_index": 3,
"text_description": "Angle-at-Centre Theorem",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "In any circle, the angle at the centre is twice the angle at the circumference that subtends the same arc.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Key Points:\nCentral angle = \\(2 \\times\\) inscribed angle.\nBoth angles stand on the same arc.\nHelps find unknown angles quickly.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": 1,
"text_description": "Same Segment Angles",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Angles subtended by chord AB at C and D are equal.",
"image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-10.jpg?height=684&width=1606&top_left_y=386&top_left_x=527"
},
{
"fragment_index": 3,
"text_description": "Equal angles from a chord",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "A chord forms identical angles at any two points on the same segment of the circle.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Key Points:\nBoth angles lie on the same side of the chord (same segment).\nNo measurement tools needed—the theorem guarantees equality.",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Angle in Semicircle",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Diameter AB joined to point C creates a right angle at C.",
"image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-11.jpg?height=678&width=657&top_left_y=403&top_left_x=515"
},
{
"fragment_index": 2,
"text_description": "Why always 90°?\nConnect the endpoints of a diameter to any point on the circle to form a triangle.\nThe angle opposite the diameter is always \\(90^{\\circ}\\); this is called the angle in a semicircle.\nKey Points:\nDiameter subtends a semicircle of \\(180^{\\circ}\\).\nAngle in a semicircle is half of \\(180^{\\circ}\\): \\(90^{\\circ}\\).\nIdentify right angles quickly in circle problems.",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Bisecting a Chord\nPerpendicular Bisector of a Chord\nFrom centre O, drop a 90° line to chord AB; it meets AB at M.\nThis line is the perpendicular bisector of AB.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Perpendicular from centre O meets chord AB at right angle.",
"image_description": "https://cdn.mathpix.com/cropped/2025_07_01_a141ee9b5a6f03e0cd28g-12.jpg?height=705&width=709&top_left_y=389&top_left_x=472"
},
{
"fragment_index": 2,
"text_description": "Key Points:\nOA = OB (radii).\nRight angle creates congruent triangles OAM and OBM.\nCongruent triangles give AM = MB, so the chord is bisected.",
"image_description": ""
}
]
},
{
"slide": 11,
"fragments": [
{
"fragment_index": 1,
"text_description": "Multiple Choice Question",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Question\nA chord subtends an angle of 35° at the circumference. What is the angle at the centre?",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "1\n35°",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "2\n70°",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "3\n140°",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "4\n90°",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "Hint:\nFor any chord, the central angle is twice the angle at the circumference.",
"image_description": ""
},
{
"fragment_index": 8,
"text_description": "Submit Answer",
"image_description": ""
},
{
"fragment_index": -1,
"text_description": "Correct!\n70° is right. The angle at the centre is double the angle at the circumference.\nIncorrect\nCheck the angle-at-centre theorem and try again.\n// MCQ interaction logic\n const correctOption = 1; // zero-based index for 70°\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('submitBtn');\n const feedbackCorrect = document.getElementById('feedbackCorrect');\n const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n \n let selectedOption = null;\n \n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n \n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n \n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
}
]
},
{
"slide": 12,
"fragments": [
{
"fragment_index": -1,
"text_description": "Match the Theorem\nDrag each theorem name onto its matching statement to test your recall.\nCheck Answers\nResults\n// Drag and drop functionality\n const draggableItems = document.querySelectorAll('.draggable-item');\n const dropZones = document.querySelectorAll('.drop-zone');\n const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n const feedbackArea = document.getElementById('feedbackArea');\n const feedbackContent = document.getElementById('feedbackContent');\n \n draggableItems.forEach(item => {\n item.addEventListener('dragstart', handleDragStart);\n item.addEventListener('dragend', handleDragEnd);\n });\n \n dropZones.forEach(zone => {\n zone.addEventListener('dragover', handleDragOver);\n zone.addEventListener('drop', handleDrop);\n zone.addEventListener('dragenter', handleDragEnter);\n zone.addEventListener('dragleave', handleDragLeave);\n });\n \n function handleDragStart(e) {\n e.target.classList.add('opacity-50');\n e.dataTransfer.setData('text/plain', e.target.dataset.id);\n }\n \n function handleDragEnd(e) {\n e.target.classList.remove('opacity-50');\n }\n \n function handleDragOver(e) {\n e.preventDefault();\n }\n \n function handleDragEnter(e) {\n e.preventDefault();\n e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n }\n \n function handleDragLeave(e) {\n e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n }\n \n function handleDrop(e) {\n e.preventDefault();\n const dropZone = e.target.closest('.drop-zone');\n dropZone.classList.remove('border-green-500', 'bg-green-50');\n \n const itemId = e.dataTransfer.getData('text/plain');\n const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n \n if (draggedItem && dropZone) {\n dropZone.appendChild(draggedItem);\n dropZone.querySelector('.text-center').style.display = 'none';\n }\n }\n \n // Check answers functionality\n checkAnswersBtn.addEventListener('click', () => {\n const results = [];\n dropZones.forEach(zone => {\n const expected = zone.dataset.id.replace('zone-','');\n const placedItem = zone.querySelector('.draggable-item');\n if (placedItem) {\n results.push(placedItem.dataset.id === expected);\n } else {\n results.push(false);\n }\n });\n const allCorrect = results.every(r => r);\n feedbackArea.classList.remove('hidden');\n feedbackContent.innerHTML = allCorrect\n ? '<p class=\"text-green-600 font-semibold\">Great job! All matches are correct.</p>'\n : '<p class=\"text-red-600 font-semibold\">Some matches are incorrect. Try again!</p>';\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Draggable Items\nAngle at Centre\nSame Segment\nSemicircle\nBisecting Chord",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Drop Zones\nAngle at the centre is twice the angle at the circumference.\nAngles in the same segment are equal.\nAngle in a semicircle is 90°.\nA perpendicular from the centre to a chord bisects the chord.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Tip:\nPicture the circle diagrams in your mind before dropping the item.",
"image_description": ""
}
]
},
{
"slide": 13,
"fragments": [
{
"fragment_index": -1,
"text_description": "Circle Essentials Recap\nThank You!\nYou can now summarise the key circle facts with confidence.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Radius, chord and arc are the three basic parts of a circle.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Arc length: \\( \\ell = 2\\pi r \\tfrac{\\theta}{360^\\circ} \\) (θ in degrees).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Sector area: \\(A=\\tfrac{\\theta}{360^\\circ}\\pi r^{2}\\); segment area: \\(A=\\tfrac{1}{2}r^{2}(\\theta-\\sin\\theta)\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Angle at centre theorem: central angle is twice the angle on the circumference.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Same-segment angles are equal; angle in a semicircle is 90°.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Perpendicular from centre bisects a chord; tangents from one point are equal and meet radius at 90°.",
"image_description": ""
}
]
}
]