View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "What is a Carbonyl Group?\nCarbonyl Group (>C=O)\nA carbonyl group is a carbon doubly bonded to oxygen, written as >C=O. The carbon is sp\n2\n-hybridised and electrophilic. The oxygen holds two lone pairs and is nucleophilic. This unit features in aldehydes, ketones, carboxylic acids and many related families.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Geometry & Polarity of Carbonyl Group\nFig 8.1 sp\n2\ncarbon showing p–π overlap with oxygen; electron cloud sits above & below the planar bonds.\nWhat the diagram tells us\nCarbonyl carbon is sp\n2\n-hybridised; three σ-bonds spread in one plane at about 120°.\nA perpendicular p–p overlap forms the π bond, creating a flat yet rigid >C═O framework.\nResonance shifts electron density toward oxygen, polarising the bond and setting up a strong dipole.\nKey Points:\nTrigonal planar geometry; bond angles ≈ 120°.\nπ electron cloud lies above and below the plane.\nResonance form B: δ\n+\nC, δ\n−\nO.\nDipole moment ≈ 2.3 D—more polar than ethers.",
"image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/134/images/951f4a88d5e6217484e2f31c89447b2f.png"
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Aldehydes vs Ketones",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Aldehyde\nTerminal carbonyl; bonded to a carbon and ≥1 H atom.\nGeneral formula \\( \\mathrm{R{-}CHO} \\).\nExample: Ethanal \\( \\mathrm{CH_3CHO} \\).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Ketone\nInternal carbonyl; bonded to two carbon atoms.\nGeneral formula \\( \\mathrm{R{-}CO{-}R'} \\).\nExample: Propanone \\( \\mathrm{CH_3COCH_3} \\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Similarities\nBoth possess the polar carbonyl group \\(>\\!C{=}O\\).\nUndergo nucleophilic addition reactions.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Meet the Carboxyl Group\nCarboxyl Group (–COOH)\nA carbonyl carbon bonded to hydroxyl oxygen. This dual unit defines carboxylic acids and underpins their characteristic acidity.\nKey Characteristics:\nExample:\nIn acetic acid, \\(CH_{3}COOH\\), deprotonation gives acetate \\(CH_{3}COO^{-}\\) stabilised by resonance over both oxygens.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Formula –COOH: carbonyl \\(C=O\\) plus hydroxyl \\(–OH\\).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Shows both carbonyl (electrophilic) and hydroxyl (proton-donating) behaviour.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Resonance spreads negative charge over two oxygens, stabilising the conjugate base.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Resonance lowers carbonyl electrophilicity yet increases overall acidity.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "IUPAC Nomenclature: Aldehydes & Ketones\nFollow these five steps to name any simple carbonyl compound correctly.\n1\nChoose Parent Chain\nSelect the longest continuous chain containing the carbonyl carbon; this becomes the parent alkane.\n2\nNumber the Chain\nGive carbonyl carbon position 1 in aldehydes, or start from the nearer end in ketones.\n3\nChange the Suffix\nReplace the terminal “-e” with “-al” for aldehydes or “-one” for ketones.\n4\nAdd Substituents\nList substituent names alphabetically with their locants; separate numbers by commas.\n5\nName Ring Systems\nOn a ring, name the ring then add “carbaldehyde”; ring ketones are numbered with carbonyl as C-1.\nPro Tip:\nCheck locants—choose the set of numbers with the lowest overall value.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "IUPAC Nomenclature: Carboxylic Acids\nFollow these steps to derive systematic names for mono- and di-carboxylic acids.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nFind Parent Chain\nChoose the longest carbon sequence that contains every ‑COOH group.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nNumber the Chain\nAssign carbon 1 to each carboxyl carbon; continue numbering for lowest possible locants.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nChange the Suffix\nReplace the terminal “-e” of the parent alkane with “-oic acid”.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "4\nApply Multiplicative Prefix\nFor two or more carboxyl groups, add di-, tri-, etc., and state their positions: e.g., butane-1,4-dioic acid.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "5\nList Substituents\nPrefix other groups alphabetically with their locant numbers before the base acid name.",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Physical Property Highlights\nBoiling Points • Solubility • Odour",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Aldehydes & Ketones\nDipole-dipole forces lift b.p. above alkanes/ethers but, lacking H-bonding, stay below alcohols (see data p 235).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Carboxylic Acids\nStrong hydrogen-bonded dimers double effective mass, giving the highest boiling points within the carbonyl family.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Water Solubility Trend\nC₁–C₄ members mix completely; added CH₂ units weaken polarity, so solubility drops rapidly along the series.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Odour Evolution\nHigh volatility C₁–C₃ acids and aldehydes smell sharp; larger or aromatic ones, less volatile, become mild and fragrant.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Identify the Family\nDrag each structural formula to the correct functional-group family. Spot the carbonyl clues, then decide: aldehyde, ketone or carboxylic acid.\nDraggable Items\n{% for item in draggable_items %}\n{{ item.label }}\n{% endfor %}\nDrop Zones\n{% for zone in drop_zones %}\n{{ zone.label }}\n{% endfor %}\nTip:\nAldehyde = C=O linked to H; Ketone = C=O flanked by two carbons; Carboxylic acid = C=O bonded to –OH.\nResults\n// Drag and drop functionality\n const draggableItems = document.querySelectorAll('.draggable-item');\n const dropZones = document.querySelectorAll('.drop-zone');\n const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n const feedbackArea = document.getElementById('feedbackArea');\n const feedbackContent = document.getElementById('feedbackContent');\n \n // Drag and drop event listeners\n draggableItems.forEach(item => {\n item.addEventListener('dragstart', handleDragStart);\n item.addEventListener('dragend', handleDragEnd);\n });\n \n dropZones.forEach(zone => {\n zone.addEventListener('dragover', handleDragOver);\n zone.addEventListener('drop', handleDrop);\n zone.addEventListener('dragenter', handleDragEnter);\n zone.addEventListener('dragleave', handleDragLeave);\n });\n \n function handleDragStart(e) {\n e.target.classList.add('opacity-50');\n e.dataTransfer.setData('text/plain', e.target.dataset.id);\n }\n \n function handleDragEnd(e) {\n e.target.classList.remove('opacity-50');\n }\n \n function handleDragOver(e) {\n e.preventDefault();\n }\n \n function handleDragEnter(e) {\n e.preventDefault();\n e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n }\n \n function handleDragLeave(e) {\n e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n }\n \n function handleDrop(e) {\n e.preventDefault();\n const dropZone = e.target.closest('.drop-zone');\n dropZone.classList.remove('border-green-500', 'bg-green-50');\n \n const itemId = e.dataTransfer.getData('text/plain');\n const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n \n if (draggedItem && dropZone) {\n dropZone.appendChild(draggedItem);\n dropZone.querySelector('.text-center').style.display = 'none';\n }\n }\n \n // Check answers functionality\n checkAnswersBtn.addEventListener('click', () => {\n // Implementation for checking answers would go here\n feedbackArea.classList.remove('hidden');\n feedbackContent.innerHTML = '<p class=\"text-green-600\">Answers checked! Review your results above.</p>';\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Check Answers",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nCollage of aldehyde, ketone & acid structures fading into a check-mark icon\nNext Steps\nPractise drawing each functional group, apply the IUPAC endings, and predict boiling points in the exercise set.\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Carbonyl group \\(>\\!C{=}O\\) is the common core of aldehydes, ketones and carboxylic acids.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Aldehyde has a terminal –CHO; ketone holds an internal C=O flanked by carbons.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Carboxyl group \\(-\\text{COOH}\\) adds –OH to carbonyl, making acids stronger than alcohols or phenols.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "IUPAC snapshots: aldehyde → –al, ketone → –one, carboxylic acid → –oic acid.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Boiling point trend: acids > ketones > aldehydes ≫ alkanes, driven by H-bonding and dipoles.",
"image_description": ""
}
]
}
]