View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": 1,
"text_description": "Meet the Parabola",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Parabola",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "A parabola is the characteristic U-shaped graph of any quadratic function \\(y = ax^{2} + bx + c\\) with \\(a \\neq 0\\).\nQuick check: Which coefficient guarantees the curve is quadratic?",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Basic Upward Curve",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Graph of \\(y = x^{2}\\)",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/CSeGLPZ7MYUnljub8PO2sGNlNYUO6x223PpmX7RY.png"
},
{
"fragment_index": 2,
"text_description": "Graph of \\(y = x^{2}\\)\nThe curve \\(y = x^{2}\\) is the base graph for all quadratic functions.\nIt opens upward, is symmetric about the y-axis, and its vertex—the lowest point—lies at the origin \\((0,0)\\).\nKey Points:\nBase graph for quadratic functions\nVertex at \\((0,0)\\)\nSymmetric about the y-axis",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": []
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Opening Downward",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/wJwnHjXSKVSN8ejVBmI3v98oBa515mPQz2MBgVRY.png"
},
{
"fragment_index": 2,
"text_description": "Effect of Negative \\(a\\)\nWhen \\(a < 0\\), the parabola opens downward.\nThe graph is a reflection of the upward curve across the \\(x\\)-axis.\nIts vertex now marks the maximum value of the quadratic.\nKey Points:\nCoefficient \\(a < 0\\) ⇒ concave down.\nVertex becomes the maximum point.\nDownward graph mirrors the \\(a > 0\\) case.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Finding the Vertex",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\n\\[y = ax^2 + bx + c\\]\nStart with the general quadratic.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\n\\[y = a\\left(x^2 + \\frac{b}{a}x\\right) + c\\]\nFactor out \\(a\\) from the \\(x\\) terms.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\n\\[y = a\\left[\\left(x + \\frac{b}{2a}\\right)^2 - \\left(\\frac{b}{2a}\\right)^2\\right] + c\\]\nComplete the square inside the bracket.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "4\n\\[y = a\\left(x + \\frac{b}{2a}\\right)^2 - \\frac{b^{2}}{4a} + c\\]\nSimplify the constant term.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "5\n\\[Vertex\\ at\\ x = -\\frac{b}{2a}\\]\nSet the squared term to zero to get the x-coordinate.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Key Insight:\nCompleting the square reveals the vertex formula \\(x = -\\frac{b}{2a}\\), essential for graphing any quadratic.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Shifted & Stretched",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Graph of \\(y = 2(x-1)^2 + 3\\)",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/mirebHbi9hrgjWul0pYMhOzZzJBZ42Aj3MI1LHSs.png"
},
{
"fragment_index": 2,
"text_description": "Translation & Dilation Explained\nCompare the parent curve \\(y = x^{2}\\) to \\(y = 2(x-1)^{2}+3\\).\nThe new coefficients show how far the graph slides and how much it stretches.\nKey Points:\nHorizontal translation: \\(x \\rightarrow x-1\\) moves the graph 1 unit right.\nVertical translation: \\(+3\\) lifts every point 3 units up.\nDilation: coefficient \\(a = 2\\) causes a vertical stretch, making the parabola narrower.\nResulting vertex: \\((1,\\,3)\\).",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Multiple Choice Question\nSubmit Answer\nCorrect!\nGreat! You identified both the correct vertex and the downward opening.\nIncorrect\nRecall: \\((h,k)\\) gives the vertex, and a negative \\(a\\) means the parabola opens downward.\nconst correctOption = 2;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('submitBtn');\n const feedbackCorrect = document.getElementById('feedbackCorrect');\n const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n \n let selectedOption = null;\n \n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n \n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n \n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Question\nFor \\(y = -3(x + 2)^2 - 4\\), which statement is true?",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\nVertex at \\((-2,-4)\\) opens up.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\nVertex at \\((2,-4)\\) opens down.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "3\nVertex at \\((-2,-4)\\) opens down.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "4\nVertex at \\((2,4)\\) opens up.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Hint:\nIn \\(y = a(x - h)^2 + k\\), the vertex is \\((h,k)\\). If \\(a<0\\), the parabola opens downward.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Recap: sign of \\(a\\) decides opening—up for \\(a>0\\), down for \\(a<0\\).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "\\(b\\) slides the parabola left or right, while \\(c\\) moves it up or down.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Vertex at \\(x = -\\frac{b}{2a}\\) marks the curve’s peak or valley.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Graph is symmetric about the vertical line through the vertex.",
"image_description": ""
}
]
}
]