View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "What is a Parabola?",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Parabola",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "A parabola is a smooth, U-shaped curve produced by the graph of any quadratic equation \\(y = ax^{2} + bx + c\\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Characteristics:\nSymmetric about its vertex.\nOpens up when \\(a > 0\\); down when \\(a < 0\\).\nRepresents every quadratic equation.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Example:\nThe curve of \\(y = x^{2}\\) is an upward-opening parabola.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "General Quadratic Form",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "\\[y = ax^2 + bx + c\\]\nIdentify \\(a\\), \\(b\\), \\(c\\) to predict how the parabola looks.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Variable Definitions\na\nOpens up/down & sets width\nb\nMoves axis of symmetry\nc\nY-intercept (vertical shift)\nx\nIndependent variable\ny\nDependent output value",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Applications\nQuick Sketch\nUse signs of \\(a, b, c\\) to foresee opening and intercept before drawing.\nPhysics Trajectories\nChanging coefficients alters a projectile’s height, range, and symmetry.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Base Shape y = x²",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Graph of \\(y = x^{2}\\)",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/U1MmAsnltT4hJLFUvEPJGaCpth4dHqGYjNlBgg1n.png"
},
{
"fragment_index": 2,
"text_description": "Parent Quadratic Graph\nThe parent curve \\(y = x^{2}\\) forms a smooth U-shape called a parabola.\nIt is perfectly symmetric about the y-axis.\nThe lowest point, or vertex, is at the origin \\((0,0)\\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Points:\nOpens upward, creating a U-shape.\nAxis of symmetry: \\(x = 0\\).\nVertex at \\((0,0)\\) is the minimum.\nPasses through \\((\\pm1,1)\\).",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Changing 'a' − Stretch & Flip",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Parabolas for varying values of \\(a\\)",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/ZlVFJCnGw2rX8WnX9bTE505OybXJmqkbacO0XMgX.png"
},
{
"fragment_index": 2,
"text_description": "Effect of coefficient \\(a\\)\nMagnitude decides the width; sign decides the opening.\nKey Points:\n\\(|a| > 1\\): Narrow, vertically stretched.\n\\(0 < |a| < 1\\): Wide, vertically shrunk.\n\\(a < 0\\): Parabola reflects and opens downward.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Upward vs Downward",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Opens Up (a > 0)\nSign of \\(a\\) is positive.\nU-shaped; arms rise as \\(|x|\\) increases.\nVertex gives the minimum \\(y\\)-value.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Opens Down (a < 0)\nSign of \\(a\\) is negative.\n∩-shaped; arms fall as \\(|x|\\) increases.\nVertex gives the maximum \\(y\\)-value.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Similarities\nBoth are parabolas of \\(y = ax^{2} + bx + c\\).\nAxis of symmetry at \\(x = -\\frac{b}{2a}\\).\nVertex is the graph’s extreme point.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Role of 'c' − Y-Intercept",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/ViSR6jG3olNOfU9Bavh6EVlSjJV7OIqbcFJVzuO0.png"
},
{
"fragment_index": 2,
"text_description": "Constant Term ‘c’",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "In \\(y = ax^2 + bx + c\\), the constant term sets the graph’s vertical position.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "It equals the y-value when \\(x = 0\\); this fixes the y-intercept.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Key Points:\nIncrease c → graph slides up; width and direction unchanged.\nDecrease c → graph slides down; same shape remains.\nOnly the y-intercept and vertex height shift by c.",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Quick Check\nCorrect!\nGreat work! You correctly applied \\(-\\frac{b}{2a}\\).\nIncorrect\nCheck \\(-\\frac{b}{2a}\\) again with \\(a = 1\\) and \\(b = 4\\).\nconst correctOption = 1;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('slide-09-g3v91k-submit');\n const feedbackCorrect = document.getElementById('slide-09-g3v91k-feedback-correct');\n const feedbackIncorrect = document.getElementById('slide-09-g3v91k-feedback-incorrect');\n \n let selectedOption = null;\n \n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n \n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n \n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Question\nFor the parabola \\(y = x^{2} + 4x + 1\\), what is the x–coordinate of its axis of symmetry?",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\n\\(x = -4\\)",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\n\\(x = -2\\)",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "3\n\\(x = 2\\)",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "4\n\\(x = 4\\)",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Hint:\nUse the formula \\(-\\frac{b}{2a}\\) to locate the axis of symmetry.",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "Submit Answer",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Coefficient \\(a\\): sign flips the opening; larger \\(|a|\\) narrows, smaller widens.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Coefficient \\(b\\): shifts the vertex sideways, giving the graph its horizontal position.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Coefficient \\(c\\): raises or lowers the whole parabola; the y-intercept is \\((0,c)\\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Master these three moves to sketch any quadratic quickly and accurately.",
"image_description": ""
}
]
}
]