View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Reflection Defined",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Reflection",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Reflection is the return of light from a smooth surface; incident and reflected rays form equal angles with the normal.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Refraction Defined",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Refraction",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "In physics, refraction is the bending of light when it passes between transparent media where its speed changes.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Light slows in denser media and bends toward the normal; speeding up makes it bend away.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": 1,
"text_description": "Ray Through Glass Slab",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Incident, refracted and emergent rays with lateral displacement",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/4snkkW0JO0ceOVqzey2yLkNuGso9qIXrnRsJxFe4.png"
},
{
"fragment_index": 3,
"text_description": "Diagram Analysis",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "The ray bends towards the normal on entering the slab and away on leaving it. The emergent ray is parallel to the incident ray but shifted sideways—this shift is called lateral displacement.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Key Points:\nIncident ray – the incoming light striking the first face.\nRefracted ray – bends inside the glass slab due to refraction.\nEmergent ray – leaves the second face, parallel to the incident.\nLateral displacement – sideways shift between incident and emergent rays.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Snell’s Law",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "\\[ n_{21} = \\frac{\\sin i}{\\sin r} \\]",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Variable Definitions\n\\( n_{21} \\)\nRefractive index of medium 2 w.r.t. medium 1\n\\( i \\)\nAngle of incidence\n\\( r \\)\nAngle of refraction",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Applications\nLens & Mirror Design\nCurvature is chosen so required \\(i\\) and \\(r\\) focus light precisely.\nOptical Fibres\nMaintains total internal reflection by controlling core–cladding indices.\nMeasuring Light Speed\nCalculate \\(v=\\frac{c}{n}\\) for glass, water, etc., using observed \\(i\\) and \\(r\\).\nSource: NCERT Class 10 Science – Chapter “Light: Reflection & Refraction”",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Graph: sin i vs sin r",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "",
"image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/xvgwQHKxOFSd12p7fuLtE0CyFK0tlVTs0n9FRzEs.png"
},
{
"fragment_index": 2,
"text_description": "What does the straight line tell us?\nPlotting experimental data for many angle pairs gives one straight line through the origin.\nIts slope \\( m = \\frac{\\sin i}{\\sin r} \\) is identical for all points, revealing the refractive index.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Points:\nStraight line = strong graphical evidence for Snell’s law.\nConstant slope shows the ratio \\( \\sin i : \\sin r \\) never changes.\nThat constant is the refractive index \\( n \\) of the second medium.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": []
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Two Laws of Reflection",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Let’s unpack the two rules step by step and master their geometry.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\nLaw 1: Same Plane\nIncident ray, reflected ray and the normal share one plane—linking mirror geometry with every beam.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\nLaw 2: \\( \\angle i = \\angle r \\)\nMeasure each angle from the normal. Equality lets you trace paths and predict images precisely.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Pro Tip:\nAlways draw the normal first; all geometry and angle checks depend on it.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Reflection vs Refraction",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Reflection\nLight ray bounces back into the original medium.\nLaw: angle of incidence = angle of reflection.\nImage in a plane mirror is virtual and laterally inverted.\nNo change in light’s speed or wavelength.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Refraction\nLight ray bends when it enters a different medium.\nLaw: Snell’s law \\(n_1\\sin i = n_2\\sin r\\).\nExplains lenses, apparent depth and mirages.\nSpeed and wavelength change; frequency stays constant.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Similarities\nBoth occur at a boundary between two media.\nEach follows precise mathematical laws, enabling prediction.\nRay path is reversible in both phenomena.",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Multiple Choice Question\nSubmit Answer\nCorrect!\nTotal internal reflection can occur only from a denser to a rarer medium when the incident angle exceeds the critical angle.\nIncorrect\nRecall: leaving glass, the ray bends away from the normal, speed increases, and TIR is possible under the right angle.\nconst correctOption = 2;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('submitBtn');\n const feedbackCorrect = document.getElementById('feedbackCorrect');\n const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n\n let selectedOption = null;\n\n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n\n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n\n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Question\nA light ray moves from glass (n = 1.5) into air (n = 1.0). Which statement is correct?",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "A\nIt bends toward the normal.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "B\nAngle of refraction < angle of incidence.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "C\nIt may undergo total internal reflection.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "D\nSpeed of light decreases.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Hint:\nThink about how a ray behaves when it leaves a denser medium for a rarer one.",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Law of Reflection\nAngle of incidence equals angle of reflection, measured from the normal.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Snell’s Law\nRefraction obeys \\( n_1\\sin i = n_2\\sin r \\), linking angles to refractive indices.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Refractive Index\nHigher index means light slows down more and bends toward the normal.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Image Formation\nMirrors and lenses create real or virtual images depending on shape and object distance.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Total Internal Reflection\nWhen incidence exceeds the critical angle, light reflects completely—used in fiber optics.",
"image_description": ""
}
]
}
]