Transcript: Question_Paper_20250714_055852.html

View and copy the extracted transcript JSON

Back to Files

Narration Generator

Generate narration from your transcript

Leave empty to use default narration settings. Use this to customize the narration approach.

[
  {
    "slide": 1,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "CBSE Class 12 Physics – Sample Paper Review\nCrack the pattern, ace the physics paper!",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 2,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Question Distribution & Your Strength\nChapter distribution and student proficiency map—see how the paper maps to your syllabus strengths.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Chapter\nQuestions\nStrength\nElectric Charges and Fields\n4\nLow\nMoving Charges and Magnetism\n3\nLow\nAlternating Current\n4\nLow\nWave Optics\n3\nLow\nNuclei\n3\nLow\nElectrostatic Potential and Capacitance\n4\nMedium\nMagnetism and Matter\n2\nMedium\nElectromagnetic Waves\n2\nMedium\nDual Nature of Radiation and Matter\n3\nMedium\nSemiconductor Electronics\n4\nMedium\nCurrent Electricity\n5\nHigh\nElectromagnetic Induction\n3\nHigh\nRay Optics and Optical Instruments\n4\nHigh\nAtoms\n2\nHigh",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 3,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Electric Charges & Fields – Toughest Question (Board-style Application)",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Locate the Zero-Force Point\nTwo +3 μC charges are fixed 0.5 m apart. Where should a −2 μC charge experience zero net electrostatic force?\nApply superposition and the inverse-square law to locate the point where forces cancel.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\nSketch charges on a straight line; choose origin at left +3 μC.\nLet −2 μC be \\(x\\) metres from the left charge, outside the 0.5 m pair.\nSet magnitudes equal: \\( \\frac{1}{x^{2}} = \\frac{1}{(0.5 + x)^{2}} \\).\nSolve: \\( x = 0.25\\ \\text{m} \\) left of the first + charge.\nBetween the + charges, forces add; zero force cannot occur there.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 4,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Moving Charges & Magnetism – Toughest Question\nHelical motion analysis\nA proton enters a 0.3 T field at 60° with speed \\(2\\times10^{6}\\,\\text{m s}^{-1}\\). Find the pitch of its helical path.\nLorentz magnetic force bends the charged particle into a circle for \\(v_{\\perp}\\) while \\(v_{\\parallel}\\) stays uniform along the field.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Key Points:\nResolve velocity: \\(v_{\\parallel}=v\\cos60^{\\circ}\\), \\(v_{\\perp}=v\\sin60^{\\circ}\\).\nMagnetic force on \\(v_{\\perp}\\) gives circular motion; none acts on \\(v_{\\parallel}\\).\nTime period \\(T=\\frac{2\\pi m}{qB}\\) for a proton.\nPitch \\(p=v_{\\parallel}T\\approx0.22\\,\\text{m}\\).\nUse \\(v_{\\parallel}\\), not total \\(v\\), when computing pitch.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 5,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Alternating Current – Toughest Question",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Transformer & losses\nIdeal transformer: \\(N_p = 500\\), \\(V_p = 220\\,\\text{V}\\). Refrigerator needs \\(V_s = 110\\,\\text{V}\\), \\(I_s = 4\\,\\text{A}\\). Find \\(N_s\\), \\(I_p\\) and efficiency with 5 % copper loss.\nAC-circuit relations: \\( \\frac{V_p}{V_s} = \\frac{N_p}{N_s} \\). Power balance: \\( V_p I_p = V_s I_s \\). Efficiency: \\( \\eta = \\frac{P_{\\text{out}}}{P_{\\text{in}}} \\).\nKey Points:\nTurns ratio gives \\(N_s = 250\\) turns.\nPower conservation ⇒ \\(I_p = 2.0\\,\\text{A}\\).\n5 % copper loss ⇒ \\(\\eta = 95\\%\\). Avoid mixing primary & secondary.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 6,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Wave Optics – Toughest Question",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "YDSE with medium change",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Two-slit interference: \\(d = 0.25\\,\\text{mm}\\), \\(\\lambda = 600\\,\\text{nm}\\), measured fringe width \\(\\beta = 2.4\\,\\text{mm}\\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Use \\( \\beta = \\frac{\\lambda D}{d} \\) to find screen distance \\(D\\).  Replace \\(\\lambda\\) by \\( \\lambda' = \\lambda/\\mu \\) to predict new fringe width in water.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Key Points:\nScreen distance: \\(D = \\frac{\\beta d}{\\lambda} = 1.0\\,\\text{m}\\).\nIn water, new wavelength \\( \\lambda' \\approx 451\\,\\text{nm}\\).\nNew fringe width: \\(\\beta' = \\beta/\\mu \\approx 1.8\\,\\text{mm}\\) (reduced by factor 1/1.33).\nPredict fringe shift by comparing original and altered interference patterns.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 7,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Nuclei – Toughest Question\nSecular equilibrium\nActivity ratio in secular equilibrium\nRadioactivity chains reach secular equilibrium when the parent’s half-life is far longer than the daughter’s.\nUsing the given half-lives, show that the activity of \\(^{234}\\text{Th}\\) tracks \\(^{238}\\text{U}\\) for \\(4.5\\times10^{9}\\,\\text{y}\\).",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Key Points:\nEquilibrium condition: \\(A_{\\text{U}} = A_{\\text{Th}}\\).\nDecay constant: \\(\\lambda = \\ln 2 / T_{1/2}\\).\nAfter \\(4.5\\times10^{9}\\,\\text{y}\\): \\(e^{-\\lambda_{\\text{Th}}t}\\!\\approx\\!0\\), \\(e^{-\\lambda_{\\text{U}}t}\\!\\approx\\!0.5\\).\nThus \\(A_{\\text{Th}}/A_{\\text{U}} = 1\\); equilibrium persists.\nPitfalls: treating 24.1 d as long, or confusing activity with mass.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 8,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Electrostatic Potential & Capacitance – Toughest Question\nConcentric Shells: Potential Profile\nIsolated shells: \\(r_1=10\\,\\text{cm}, Q_1=+8\\,\\text{nC}\\); \\(r_2=20\\,\\text{cm}, Q_2=-4\\,\\text{nC}\\).\nUse Gauss law to find \\(E\\). Then apply \\(V(r)=kQ/r\\) for each shell, superpose, sketch \\(V(r)\\) and obtain \\(\\Delta V\\).",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Key Points:\nInside any conductor \\(E=0\\) ⇒ flat potential regions.\nEvaluate three zones: \\(r<10\\text{ cm}\\), \\(10<r<20\\text{ cm}\\), \\(r>20\\text{ cm}\\).\nFor \\(r>20\\text{ cm}\\), \\(V(r)=k\\left(\\frac{Q_1}{r}+\\frac{Q_2}{r}\\right)\\).\nPotential difference: \\(\\Delta V=V_{10}-V_{20}=360\\,\\text{V}\\) (inner shell higher).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 9,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Magnetism & Matter – Toughest Question\nAtomic moment estimation",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "A toroid with \\( \\mu_r = 2000 \\), mean radius \\( r = 0.15\\,\\text{m} \\) and 600 turns carries a current of 3 A.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Find (a) the magnetic field \\( B \\) inside the core and (b) the magnetic moment per iron atom when the atomic density is \\( 8.5\\times10^{28}\\,\\text{m}^{-3} \\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\n\\( B = \\mu_0 \\mu_r \\dfrac{NI}{2\\pi r} \\) — include relative permeability.\n\\( H = \\frac{NI}{2\\pi r} \\), \\( M = \\frac{B}{\\mu_0}-H \\) connects field and magnetisation.\nAtomic moment \\( m = \\frac{M}{n} \\approx 2.1\\,\\mu_B \\).\nCore relation \\( B = \\mu_0(H+M) \\) links macroscopic \\( B \\) to microscopic \\( m \\).\nPitfalls: ignoring permeability or the \\( H \\) term overestimates magnetisation.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 10,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Electromagnetic Waves – Toughest Question\nDisplacement Current via Maxwell’s Correction\nA parallel-plate capacitor (area 50 cm², gap 2 mm) is driven by \\(V = 200\\sin(1.5\\times10^{5}t)\\,\\text{V}\\). Find the displacement current between its plates.\nSolution showcases Maxwell’s corrective term in the Ampère–Maxwell law.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Key Points:\n\\(A = 50\\,\\text{cm}^{2} = 5.0\\times10^{-3}\\,\\text{m}^{2}\\).\nCapacitance \\(C = \\varepsilon_{0}A/d\\).\nElectric flux \\( \\Phi_E = C V / \\varepsilon_{0}\\).\nDisplacement current \\(I_d = \\varepsilon_{0}\\,d\\Phi_E/dt = C\\,dV/dt\\)  (Ampère–Maxwell).\n\\(dV/dt = 200(1.5\\times10^{5})\\cos(1.5\\times10^{5}t)\\).\nUse SI units; do not confuse with conduction current.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 11,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "Dual Nature – Toughest Question",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Work function deduction",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Zn photocell stops current at \\(V_s = 1.3\\,\\text{V}\\) for \\(\\lambda = 250\\,\\text{nm}\\). Determine the work function \\(\\phi\\) and predict \\(V_s\\) for \\(\\lambda = 300\\,\\text{nm}\\).",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Key Points:\nUse \\(eV_s = h\\nu - \\phi\\)  – Einstein photoelectric equation.\nConvert wavelength to frequency: \\(\\nu = \\frac{c}{\\lambda}\\).\nFirst data ➜ \\(\\phi = h\\nu - eV_s\\).\nInsert \\(\\phi\\) into second wavelength to obtain new \\(V_s\\).\nKeep energies in eV; avoid mixing Joules and eV.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 12,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Semiconductor Electronics – Toughest Question\nPlot load line & set Q-point",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Question: For a Si BJT in CE mode with \\(V_{CC}=12\\,\\text{V}\\), \\(R_C=2\\,\\text{k}\\Omega\\), \\(R_B=200\\,\\text{k}\\Omega\\) and \\(\\beta =120\\), find the Q-point and comment on thermal runaway.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Solution: \\(I_B=\\frac{V_{CC}-V_{BE}}{R_B}= \\frac{12-0.7}{200\\,\\text{k}\\Omega}=56\\,\\mu\\text{A}\\). Hence \\(I_C=\\beta I_B \\approx 6.8\\,\\text{mA}\\), but the load-line limit is \\(I_{C\\,sat}= \\frac{V_{CC}}{R_C}=6\\,\\text{mA}\\). The transistor therefore saturates; Q-point is near \\((I_C \\approx 6\\,\\text{mA},\\, V_{CE} \\approx 0\\,\\text{V})\\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\nSubtract \\(V_{BE}\\) when computing base bias current.\nDraw the \\(I_C\\!-\\!V_{CE}\\) load line to visualise active, cut-off and saturation regions.\nSelect a Q-point in the active region for bias stability; extremes cause distortion.\nNear saturation, \\(P = V_{CE} I_C\\) is low, so thermal runaway is unlikely.\nBias stabilisation safeguards BJT amplifiers against temperature rise.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 13,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Current Electricity – Toughest Question\nPotentiometer calibration",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "A 1 m potentiometer wire (10 Ω) is fed by a 2.5 V DC source with internal resistance 0.5 Ω.\nNull deflection occurs at 65 cm for the unknown DC cell.\nUsing the null-deflection method we obtain \\(E_x \\approx 1.55\\,\\text{V}\\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\n\\(k=\\frac{E_D}{R+r}\\times\\frac{R}{L}\\approx2.38\\,\\text{V m}^{-1}\\); therefore \\(E_x=k\\times0.65=1.55\\,\\text{V}\\).\nSensitivity rises when the wire is longer or the current is reduced with a series resistance.\nUse driver cell emf \\(E_D\\), not terminal voltage; always include internal \\(r\\).\nNull deflection keeps the test cell in an open circuit, avoiding loading error in DC circuits.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 14,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Electromagnetic Induction – Toughest Question\nMoving Loop Problem\nA square loop of side 10 cm (R = 1 Ω) is pulled out of a 0.4 T region at 3 m s⁻¹, leaving the field in 0.2 s.\nDetermine \\(I(t)\\) and the mechanical work done. Relate the changing magnetic flux to induced emf and work.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Key Points:\nFaraday law: \\(\\varepsilon=-\\frac{d\\Phi}{dt}=-B\\,\\frac{dA}{dt}\\).\nUniform pull ⇒ \\(dA/dt=-l v\\); motional emf constant: \\(\\varepsilon=Bvl=0.12\\;\\text{V}\\).\nInduced current: \\(I(t)=\\varepsilon/R=0.12\\;\\text{A}\\;(0\\le t\\le0.2\\text{ s})\\), zero afterwards.\nWork–energy: \\(W=\\int_0^{0.2}I^{2}R\\,dt\\approx2.9\\times10^{-3}\\,\\text{J}\\).\nAvoid using constant flux; keep Lenz’s-law sign for direction.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 15,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Ray Optics – Toughest Question\nCompound microscope",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Objective \\(f_o = 0.8\\;\\text{cm}\\), eyepiece \\(f_e = 2.5\\;\\text{cm}\\), tube length 15 cm. Object is 1 cm from objective. Calculate total magnifying power for near-point viewing.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Goal: design the required magnification by chaining lens formulae and the microscope relation.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Key Points:\nUse \\( \\frac{1}{f_o} = \\frac{1}{v_o} - \\frac{1}{u_o}\\) with \\(u_o = -1\\;\\text{cm}\\).\nMatch instrument tube: \\(v_o + v_e = 15\\;\\text{cm}\\).\n\\(\\frac{1}{f_e} = \\frac{1}{v_e} - \\frac{1}{u_e}\\) gives eyepiece object distance.\nTotal magnification \\(M = \\frac{L}{f_o}\\left(1 + \\frac{D}{f_e}\\right)\\) with \\(L = 15\\;\\text{cm},\\; D = 25\\;\\text{cm}\\).\nComputed value: \\(M \\approx 150\\).\nAvoid sign errors; never drop the \\((1 + D/f_e)\\) factor.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 16,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Atoms – Toughest Question\nBohr model limits\nUse Bohr theory to find the electron speed in hydrogen for \\(n = 2\\).\nCompute the photon wavelength when the electron drops from \\(n = 2\\) to \\(n = 1\\).\nDiscuss how these results fit the observed spectra and where the model falls short.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Key Points:\nSpeed: \\(v_2=\\frac{e^{2}}{2\\varepsilon_0 h}\\frac{1}{2}\\).\nEnergy gap: \\(\\Delta E = 13.6\\,\\text{eV}\\left(1-\\frac{1}{4}\\right)=10.2\\,\\text{eV}\\).\nWavelength: \\(\\lambda = \\frac{hc}{\\Delta E}\\approx 1.22\\times10^{-7}\\,\\text{m}\\) (Lyman-α line).\nLimitations: no fine-structure, fails for multi-electron atoms.\nCommon errors: ignore J–eV conversion, apply non-relativistic \\(v\\) at high \\(n\\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 17,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Key Take-aways",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Start with Laws\nRecall the governing law, list knowns, and set the formula—your quick recap foundation.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Draw & Visualise\nNeat diagrams reveal field directions and cut algebra mistakes.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Units Audit\nCheck dimensions; unit mismatches flag most hidden errors.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Isolate First\nSolve symbolically, then plug numbers—saves time and reduces calculator slips.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Link to Concept\nTie each answer back to the concept; memory sticks to meaning—things to remember!",
        "image_description": ""
      }
    ]
  }
]