Transcript: Question_Paper_20250630_072013.html

View and copy the extracted transcript JSON

Back to Files

Narration Generator

Generate narration from your transcript

Leave empty to use default narration settings. Use this to customize the narration approach.

[
  {
    "slide": 1,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "Class 12 CBSE Physics – Targeted Revision Session",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Weak-to-Strong Chapter Walk-through",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Roadmap: decode the 2024-25 sample paper, flag your weak concepts, and practise targeted problems to convert them into scoring strengths.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Sample paper snapshot – 33 questions, 5 sections (A–E), 70 marks, 3 h: our plan mirrors this pattern.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Source: CBSE Physics Sample Question Paper 2024-25 (Code 042)",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 2,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Chapter-wise Question Distribution & Your Strength\nRevision Roadmap\nMore questions mean higher exam weightage. Target “low” chapters first, consolidate “med”, then polish “high”.\nChapter\n# Qs\nStrength\nElectric Charges & Fields\n3\nLow\nMoving Charges & Magnetism\n3\nLow\nAlternating Current\n1\nLow\nWave Optics\n3\nLow\nNuclei\n2\nLow\nElectrostatic Potential & Capacitance\n2\nMed\nMagnetism & Matter\n1\nMed\nElectromagnetic Waves\n2\nMed\nDual Nature of Radiation & Matter\n3\nMed\nSemiconductor Electronics\n2\nMed\nCurrent Electricity\n4\nHigh\nElectromagnetic Induction\n2\nHigh\nRay Optics & Optical Instruments\n3\nHigh\nAtoms\n2\nHigh",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 3,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Electric Charges & Fields – Tough Question\nGauss’s Law • Infinite Line Charge\nGauss’s theorem:\nNet electric flux through a closed surface equals enclosed charge divided by \\( \\varepsilon_0 \\).\nPitfalls: choosing a spherical surface breaks symmetry; remember no flux through end-caps.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "1. Gaussian surface —\ncoaxial cylinder of radius \\( r \\) and length \\( L \\).",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "2. Flux evaluation —\n\\( E \\) is radial & uniform on curved area; ends contribute zero, so \\( \\Phi_E = E(2\\pi rL) \\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "3. Apply law —\n\\( E(2\\pi rL) = \\lambda L/\\varepsilon_0 \\).",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Result:\n\\( E(r) = \\dfrac{\\lambda}{2\\pi \\varepsilon_0 r} \\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 4,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Moving Charges & Magnetism – Tough Question\nMagnetic Force Balance\nImportant formula: \\(F = qvB = mg\\)",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "A 10 g ball carrying +10 mC slides freely inside a vertical, frictionless tube. The tube is moved horizontally from east to west through a uniform 2 T magnetic field. Find (i) the minimum tube speed that keeps the ball stationary relative to the tube, and (ii) the direction of the magnetic field.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Force balance:\nset \\(qvB = mg\\) so magnetic force equals weight.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Solve speed:\n\\(v = \\dfrac{mg}{qB} = \\dfrac{0.01\\,\\text{kg}\\times 9.8}{0.01\\,\\text{C}\\times 2\\,\\text{T}} \\approx 4.9\\ \\text{m s}^{-1}\\).",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Direction:\nRight-hand rule → with \\(v\\) west and \\(F\\) up, \\(B\\) must point south.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Key idea:\n\\(F = qvB\\) for motion ⟂ \\(B\\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 5,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Alternating Current – Tough Question\nNew \\(V_L\\) after Short\nQuestion: In a series LCR circuit \\(V_R = V_C = V_L = 10\\,\\text{V}\\) (resonance). The capacitor is short-circuited. Find the new voltage across the inductor.\nHints\n1. Resonance ⇒ \\(X_L = X_C\\) and \\(R = X_L\\).\n2. Without the capacitor, \\(Z = \\sqrt{R^{2}+X_L^{2}} = R\\sqrt{2}\\); current becomes \\(I/\\sqrt{2}\\).\n3. Hence \\(V_L = IX_L/\\sqrt{2} = 10/\\sqrt{2} ≈ 7.1 V\\).\nAnswer: \\(10/\\sqrt{2}\\,\\text{V}\\).\nPitfalls: assuming current unchanged or forgetting \\(V_C = 0\\) after the short.\nKey relation: \\(Z = \\sqrt{R^{2}+(\\omega L)^{2}}\\)",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 6,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Wave Optics – Tough Question\nDual-wavelength YDSE\nQ.\nIn a Young’s double-slit set-up using\nλ\n1\n= 400 nm\nand\nλ\n2\n= 600 nm\n, find the smallest distance\ny\nfrom the central maximum where a common dark fringe appears.\nKey relation\n\\( \\Delta = m\\lambda_1 = \\left(m+\\tfrac{1}{2}\\right)\\lambda_2 \\)\nPitfalls: mix-ups between bright & dark criteria, forgetting to convert nm to metres.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Apply the condition above to obtain the least positive integer \\( m \\).",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Calculate the corresponding path difference \\( \\Delta \\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Translate to screen position: \\( y = \\dfrac{\\Delta D}{d} \\) (standard YDSE geometry).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 7,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Nuclei – Tough Question\nBinding-Energy Curve Insight\nQuestion:\nUsing the binding-energy per nucleon curve, decide which nucleus—W(190), X(90), Y(60) or Z(30)—is most likely to (i) undergo fission and (ii) undergo fusion. Give a brief reason.\nEnergy is released whenever a nucleus moves toward the curve’s peak at A≈60. Don’t confuse total binding energy with binding energy per nucleon.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Hint 1 – Curve Slope:\nFor A > 120 the curve falls; such heavy nuclei release energy by splitting.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Hint 2 – Light Nuclei:\nVery light nuclei (A < 10) lie low on the curve; they gain energy by combining.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Hint 3 – Apply Values:\nW (190) is heavy ⇒ fission. Z (30) is light ⇒ fusion.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 8,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Electrostatic Potential & Capacitance – Tough Question\nDielectric vs Metal Slab\nProblem\nA parallel-plate capacitor (plate area \\(A\\), gap \\(d\\)) receives\n(i) a dielectric slab of thickness \\(t\\) and permittivity \\(\\kappa\\),\n(ii) a conducting slab of thickness \\(t\\) ( \\(t<d\\) ).\nDerive \\(C\\) in each case and state which insertion increases capacitance more.\nHint 1\nModel dielectric case as two series sections:\nair gaps \\((d-t)\\) and dielectric slab \\(t/\\kappa\\).\nHint 2\nEquivalent capacitance\n\\(C_{\\text{dielectric}}=\\dfrac{\\varepsilon_0A}{d-t+t/\\kappa}\\).\nHint 3\nIn a metal, \\(E=0\\); effective separation becomes \\(d-t\\), so\n\\(C_{\\text{metal}}=\\dfrac{\\varepsilon_0A}{d-t}\\).\nBecause \\(d-t < d-t+t/\\kappa\\), we get \\(C_{\\text{metal}} > C_{\\text{dielectric}}\\).\n⚠︎ Common slips: adding capacitances in parallel, omitting \\(\\kappa\\).\nCapacitance grows as the effective plate separation shrinks.\nSource: CBSE Physics Sample Question Paper (2024 – 25)",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 9,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Magnetism & Matter – Conceptual Question\nField Ratio at \\(a/2\\) Below & Above\nA solid wire of radius \\(a\\) carries uniform current \\(I\\).\nFind \\(\\displaystyle \\frac{B_{\\,a/2\\;{\\text{below}}}}{B_{\\,a/2\\;{\\text{above}}}}\\).\nHints\n1. Ampère’s law → \\(B_{\\text{in}}=\\mu_0 I r /(2\\pi a^{2})\\), \\(B_{\\text{out}}=\\mu_0 I /(2\\pi r)\\).\n2. Radii: inside point \\(r=a/2\\); outside point \\(r=1.5a\\).\n3. Ratio \\(= (a/2)/(1.5a)=1/3\\).\nExpected answer : \\(1:3\\).\nSource: CBSE Physics Sample Paper 2024 – Q3",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Watch for mixing inside/outside formulas or using surface distances instead of center distances. Remember: inside \\(B\\propto r\\); outside \\(B\\propto 1/r\\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 10,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "Electromagnetic Waves – Tough Question",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Spectrum Production Match",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Match each electromagnetic wave with its typical production mechanism: Infra-red, Radio, Light and Microwave.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Hints\nIR – vibrations of atoms or molecules.\nRadio – oscillating electrons in aerial/LC circuit.\nLight – electronic transitions between atomic levels.\nMicrowave – klystron or maser action.\nMap each wave to one source only; don’t mix IR with microwave.\nRemember: production process follows the wave’s frequency range.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 11,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Dual Nature – Tough Question\nInterpret the I–V Curves\nTask →\nFrom the three photoelectric I–V plots (A, B, C), rank the incident beams by\nintensity\nand by\nfrequency\n.\nHint 1:\nHigher saturation current ⇒ higher intensity.\nHint 2:\nMore negative stopping potential ⇒ higher photon frequency (energy).\nHint 3:\nCompare both features to classify A, B, C.\nPitfall – Stopping potential is independent of intensity.\nEinstein’s Photoelectric Equation: \\(eV_0 = h\\nu - \\phi\\).  Thus \\(K_{\\text{max}} = eV_0\\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 12,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Semiconductor Electronics – Tough Question\nP-Type Band Diagram & Circuit\nQuestion :\nDraw energy-band diagrams for a P-type semiconductor at 0 K and room temperature. Decide if the bulb glows when the switch is (a) open, (b) closed in the ideal-diode circuit.\nHints\n• 0 K: Fermi level lies just above valence band, near acceptor level.\n• Room T: holes populate valence band; \\(E_F\\) rises slightly.\n• Switch open — diode reverse-biased; circuit broken; bulb off.\n• Switch closed — diode forward-biased; current flows; bulb on.\nWatch out :\nMisplacing \\(E_F\\) in conduction band or assuming reverse leakage in an ideal diode.\nP-N Junction: Forward bias lowers the depletion barrier, allowing majority carriers to conduct.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 13,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Current Electricity – Tough Question\nTemperature-Dependent Resistance\nA heating element on a 100 V battery (internal resistance 1 Ω) draws 10 A at 20 °C. After warming to 320 °C, find the power dissipated inside the battery. Temperature coefficient α = 3.7 × 10\n−4\n°C\n−1\n.\nRemember: apply α only to the element, not to the constant internal resistance. Power lost inside a source is always \\(I^{2}r\\).\nKey formula: \\(R_T = R_0(1 + \\alpha\\,\\Delta T)\\)",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Hint 1:\nHot resistance   \\(R_h = R_{20}[1 + \\alpha\\,\\Delta T]\\)",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Hint 2:\nSteady current   \\(I = \\dfrac{V}{r + R_h}\\)",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Hint 3:\nBattery loss   \\(P_{int} = I^{2}r\\)",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 14,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Electromagnetic Induction – Tough Question\nA.C. Generator: Instantaneous EMF\nQuestion – Derive the instantaneous emf induced in an N-turn coil of area A rotating with angular speed \\( \\omega \\) in a uniform field \\( B \\).\nEnergy comes from the mechanical work done by the prime mover rotating the coil.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "1. Magnetic flux: \\( \\Phi = N B A \\cos \\theta \\), where \\( \\theta = \\omega t \\).",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "2. Faraday’s law: \\( e = -\\dfrac{d\\Phi}{dt} \\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "3. Differentiate ⇒ \\( e = N B A \\omega \\sin \\omega t \\).",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Peak value: \\( e_{\\text{max}} = N B A \\omega \\).",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Negative sign shows Lenz’s law; we usually quote magnitude only.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 15,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Ray Optics – Tough Question\nCassegrain Telescope Imaging\nTask: Draw a ray diagram of a Cassegrain telescope and state two advantages over a refractor.\n• Primary concave and secondary convex mirrors fold the optical path.\n• Secondary reflects rays through the central hole in the primary to the final focus.\n• Advantages: no chromatic aberration; long focal length with a short, light tube.\nAvoid: forgetting the hole in the primary mirror or claiming lower spherical aberration without proof.\nSource: CBSE Physics SQP 2024-25 Q24",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 16,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Atoms – Tough Question\nHydrogen Emission Line Puzzle\nA discharge lamp contains an enormous number of hydrogen atoms. Each one-electron atom can be excited to different quantum levels. When electrons in different atoms return to lower levels, they emit photons with energies equal to the level gaps, \\(E = 13.6\\,\\text{eV}\\,(1/n_f^{2} - 1/n_i^{2})\\). The many possible \\(n_i \\rightarrow n_f\\) transitions across the ensemble create the full set of discrete spectral lines, even though every atom supplies only one electron.\nCommon mistake: imagining one electron makes all lines at once. In reality, many atoms, each in a single state, together produce the spectrum.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 17,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Key Takeaways\nQuick Recap\n• Exploit symmetry before using Gauss’s or Ampere’s law.\n• Levitation needs \\(qvB = mg\\).\n• At resonance \\(V_L = V_C\\); shorting \\(C\\) changes impedance.\n• Interference minima: path difference = \\((m+\\tfrac12)\\lambda\\).\n• Peak energy release near \\(A \\approx 60\\).\n• Capacitance rises as effective gap shrinks.\n• Wire field: \\(B \\propto r\\) inside, \\(B \\propto 1/r\\) outside.\n• Photon energy shifts stopping potential, not saturation current.\n• Forward bias narrows depletion layer, enabling current.\n• I²R losses heat conductors—monitor current.\n• Generator emf \\(e_{\\text{max}} = NBA\\omega\\); mechanical work → electricity.\n• Reflecting telescopes avoid chromatic aberration and stay compact.\n• Many atoms yield multiple spectral lines, not one electron.\nNext steps: revisit weaker chapters first, then drill derivations and numericals daily.",
        "image_description": ""
      }
    ]
  }
]