Transcript: First_4_questions_only_20250625_131856.html

View and copy the extracted transcript JSON

Back to Files

Narration Generator

Generate narration from your transcript

Leave empty to use default narration settings. Use this to customize the narration approach.

[
  {
    "slide": 1,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Uniform E-field & V\nApplications\nSource: CBSE Sample Paper 2024-25",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "\\[\\Delta V = -\\vec E \\cdot \\Delta \\vec r\\]",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Variable Definitions\n\\( \\Delta V \\)\nchange in electric potential\n\\( \\vec E \\)\nuniform electric field\n\\( \\Delta \\vec r \\)\ndisplacement between points",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "CBSE SQP Q1\nUniform field \\( \\vec E = E\\hat i \\). Compare potentials at A(0,0), B(1 cm,0), C(0,1 cm).",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Key Idea\nPotential drops along field lines, unchanged along equipotentials.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Answer\n\\(V_A > V_B\\) and \\(V_C = V_A\\).",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "Quick Check\nšŸ‘/šŸ‘Ž Does \\(V_C = V_A\\)?",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 2,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Connected Spheres\nCBSE SQP Q2: Equal potential ⇒ compare surface fields.\nPro Tip:\nEqual potential does not imply equal field—the field scales inversely with radius here.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "1\nCharge Redistribution\nWire joins two distant metal spheres; charges flow until both sit at the same potential \\(V\\).",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "2\nEqual-Potential Condition\n\\(kQ_1/r_1 = kQ_2/r_2\\)  ⇒  \\(Q_1/Q_2 = r_1/r_2\\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "3\nSurface Field Ratio\nWith \\(E = kQ/r^{2}\\), we get \\(E_1/E_2 = r_2/r_1\\). The smaller sphere feels the stronger field (Option B).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 3,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Field of a Thick Wire\n\\[\n                            B(r)=\n                            \\begin{cases}\n                                \\dfrac{\\mu_{0} I r}{2\\pi a^{2}}, & r\\le a \\\\[6pt]\n                                \\dfrac{\\mu_{0} I}{2\\pi r}, & r\\ge a\n                            \\end{cases}\n                            \\]\nVariable Definitions\nApplications\nSource: CBSE Sample Question Paper 2024-25 (Q3)",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "\\(I\\)\nSteady current in wire",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "\\(a\\)\nWire radius",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "\\(r\\)\nDistance from centre",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "\\( \\mu_{0} \\)\nPermeability of free space",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Inside vsĀ Outside\nInside, \\(B\\propto r\\); cross the surface and \\(B\\propto 1/r\\). Ampere’s law applies in both zones.",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "CBSE Q3Ā Prompt\nFind \\( |B| \\) at \\(1.5a\\) ( \\(a/2\\) above surface ) and at \\(0.5a\\) (inside). Give the ratio.",
        "image_description": ""
      },
      {
        "fragment_index": 7,
        "text_description": "Answer\n\\(B_{\\text{out}} = \\mu_{0}I/3\\pi a\\), \\(B_{\\text{in}} = \\mu_{0}I/4\\pi a\\) ⇒ ratio \\(4:3\\).",
        "image_description": ""
      },
      {
        "fragment_index": 8,
        "text_description": "QuickĀ Quiz\nVote: 1 : 1, 4 : 3, or 3 : 4 — which is correct?",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 4,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Diffraction Happens\nRainbow diffraction on a CD\nAll waves can bend around edges",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/2020/images/c3f55b0202d36bc76214f31950cea9ee.png"
      },
      {
        "fragment_index": 1,
        "text_description": "Your voice curving round a corner and the rainbow sheen on a CD are both produced by diffraction.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "The effect appears whenever the size of an opening or obstacle matches the wavelength.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Diffraction is a universal property of waves—sound, light, ultrasonic, all.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "CBSE SQP 2024-25 Q4 answer: Option D – sound waves as well as light waves.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 5,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Things to Remember\nRecall these must-know formulas & patterns for Q1–Q4",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Q1  Uniform E Field\nPotential drops linearly: \\( \\Delta V = -E\\,\\Delta x \\).",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Q2  Connected Conductors\nAt equilibrium \\( V_1 = V_2 \\); surface field varies as \\( E \\propto 1/r \\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Q3  Thick Wire Current\nMagnetic field: inside \\( B \\propto r \\); outside \\( B \\propto 1/r \\).",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Q4  Diffraction Rule\nNoticeable when aperture ā‰ˆ wavelength—true for all waves.",
        "image_description": ""
      }
    ]
  }
]