View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Why Atoms Seek Octets\nOctet Rule\nAtoms are most stable when their valence shell holds 8 electrons. They reach this octet by losing, gaining, or sharing electrons.\nThis drive for an octet underlies ionic and covalent bonding in carbon compounds.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Why Not Ionic for Carbon?\nLose 4 e⁻ → C⁴⁺\nGain 4 e⁻ → C⁴⁻\nKey Takeaway",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Four ionisations need ≈ 5 000 kJ mol⁻¹.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Such immense energy is unavailable in normal reactions.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "C⁴⁺ would quickly pull electrons back, so it is unstable.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Carbon must hold 10 electrons with only +6 charge.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Extra electron–electron repulsion makes C⁴⁻ highly unstable.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Energy released on gaining 4 e⁻ is far too small.",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "Both ionic routes are energetically prohibitive.",
"image_description": ""
},
{
"fragment_index": 8,
"text_description": "Carbon therefore shares electrons to complete its octet – covalent bonding.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Covalent Bond Defined",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Covalent Bond",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "A covalent bond is a mutual sharing of one or more electron pairs between atoms, giving each a stable configuration.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Characteristics:\nFormed by a shared electron pair\nShown as a single dash (—) in structural notation\nEnsures each atom reaches octet or duplet stability",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Example:\nH–H represents the single covalent bond in a hydrogen molecule.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Single Bonds: Methane Example\nLewis dot diagram of CH₄\nVisualising four shared pairs in CH₄\nIn the Lewis dot–cross diagram of methane, carbon places one dot on each side.\nEach hydrogen adds one cross, pairing with a carbon dot to form a single covalent bond.\nAll atoms reach stability: carbon’s octet, hydrogen’s duet.\nKey Points:",
"image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/451/images/f060a57ed4424b6a429300d37b380c9b.png"
},
{
"fragment_index": 1,
"text_description": "4 C–H single bonds; four shared pairs.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Dots (●) from carbon, crosses (×) from hydrogen.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Diagram shows carbon’s tetravalency and octet completion.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Double Bonds: Ethene\nElectron dot and line structure of ethene\nCarbon–Carbon Double Bond in \\(C_2H_4\\)\nIn ethene, two electron pairs are shared between the carbon atoms.\nOne pair makes a strong σ bond; the other forms a π bond, so we draw C=C.\nKey Points:\nTwo shared pairs → double bond (C=C).\nDouble bond is shorter and stronger than a single C–C bond.",
"image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/3319/images/cbfb602716ea6b602d91323ea7fbd22a.png"
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Triple Bonds: Ethyne\nElectron dot and line structures of ethyne (C₂H₂)\nRepresenting the C≡C bond\nKey Points:",
"image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/media.slid.es/uploads/2876182/images/12051334/ch-10_Some_Basic_Principles___Techniques_Medical_Chemistry-X__2_-12.jpg"
},
{
"fragment_index": 1,
"text_description": "In ethyne, each carbon shares three electron pairs with the other carbon, forming a triple bond.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "This bond is the shortest and strongest among carbon–carbon links.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Three shared pairs = triple bond (≡).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Draw as C≡C or with three lines in electron-dot model.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Shortest C–C bond length gives maximum bond strength.",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Single vs Double vs Triple\nAs shared pairs increase, bonds become shorter and stronger.\nBond Type\nBond Order\nAverage Length (Å)\nRelative Strength\nSingle (C–C)\n1\n1.54\nWeakest\nDouble (C=C)\n2\n1.34\nStronger\nTriple (C≡C)\n3\n1.20\nStrongest",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Carbon Chains: Catenation",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nSelf-linking ability\nEach carbon forms strong covalent bonds with another carbon, allowing endless C–C connections.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nVariety of structures\nRepeated bonding builds long chains, branches, and rings—basis of organic diversity.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Pro Tip:\nCovalent bonding lets carbon create stable, long chains—so you can easily outline catenation now!",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Match Molecule to Bond Type\nDrag each molecule to the matching bond column to prove you can classify single, double, and triple C–C bonds.\nDraggable Items\nCH₄\nC₂H₄\nC₂H₂\nC₆H₆\nDrop Zones\nSingle Bond\nDouble Bond\nTriple Bond\nTip:\nCount the shared electron pairs between the carbons—1 = single, 2 = double, 3 = triple.\nCheck Answers\nResults\n// Drag and drop functionality\n const draggableItems = document.querySelectorAll('.draggable-item');\n const dropZones = document.querySelectorAll('.drop-zone');\n const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n const feedbackArea = document.getElementById('feedbackArea');\n const feedbackContent = document.getElementById('feedbackContent');\n \n // Drag and drop event listeners\n draggableItems.forEach(item => {\n item.addEventListener('dragstart', handleDragStart);\n item.addEventListener('dragend', handleDragEnd);\n });\n \n dropZones.forEach(zone => {\n zone.addEventListener('dragover', handleDragOver);\n zone.addEventListener('drop', handleDrop);\n zone.addEventListener('dragenter', handleDragEnter);\n zone.addEventListener('dragleave', handleDragLeave);\n });\n \n function handleDragStart(e) {\n e.target.classList.add('opacity-50');\n e.dataTransfer.setData('text/plain', e.target.dataset.id);\n }\n \n function handleDragEnd(e) {\n e.target.classList.remove('opacity-50');\n }\n \n function handleDragOver(e) {\n e.preventDefault();\n }\n \n function handleDragEnter(e) {\n e.preventDefault();\n e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n }\n \n function handleDragLeave(e) {\n e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n }\n \n function handleDrop(e) {\n e.preventDefault();\n const dropZone = e.target.closest('.drop-zone');\n dropZone.classList.remove('border-green-500', 'bg-green-50');\n \n const itemId = e.dataTransfer.getData('text/plain');\n const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n \n if (draggedItem && dropZone) {\n dropZone.appendChild(draggedItem);\n dropZone.querySelector('.text-center').style.display = 'none';\n }\n }\n \n // Check answers functionality\n checkAnswersBtn.addEventListener('click', () => {\n // Implementation for checking answers would go here\n feedbackArea.classList.remove('hidden');\n feedbackContent.innerHTML = '<p class=\"text-green-600\">Answers checked! Review your results above.</p>';\n });",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways on Covalent Carbon",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Tetravalent Sharing\nCarbon shares four electrons, completing its octet by covalent bonding.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Varied Bond Types\nSingle, double, and triple covalent bonds give flexibility in structure and reactivity.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Endless Catenation\nCarbon atoms link to themselves, forming long chains, rings, and branches.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Compound Diversity\nThese features create millions of organic compounds, proving carbon’s unmatched versatility.",
"image_description": ""
}
]
}
]