View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "What is a Covalent Bond?\nCovalent Bond\nA covalent bond is a chemical bond where two atoms gain stability by sharing one or more pairs of electrons.\nNo ions form; shared electron pairs hold atoms together, setting covalent bonds apart from ionic or metallic bonding.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Why Does Carbon Form Covalent Bonds?\nCarbon atom showing 2,4 electron arrangement\nElectronic Configuration and Valency\nElectronic configuration of carbon is 2,4; it has four electrons in its outer (valence) shell.\nRemoving or adding four electrons needs too much energy, so carbon shares electrons to complete the octet and becomes stable.\nKey Points:\nElectronic configuration: 2,4\nValency = 4 (needs four more electrons)\nShares electrons → covalent bonds satisfy octet rule",
"image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/3520/images/c39c60963591e7f4836d24c2cfcda581.png"
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Single, Double & Triple Bonds\nCarbon can share 1, 2 or 3 pairs of electrons.\nTypes of covalent bonds in carbon compounds\nKey Points:",
"image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/media.slid.es/uploads/2780838/images/12158769/35.png"
},
{
"fragment_index": 1,
"text_description": "Carbon attains stability by sharing valence electrons with other atoms.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "The number of shared pairs decides whether the bond is single, double, or triple.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Single bond – 1 shared pair; Methane \\( \\mathrm{CH_4} \\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Double bond – 2 shared pairs; Ethene \\( \\mathrm{C_2H_4} \\).",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Triple bond – 3 shared pairs; Ethyne \\( \\mathrm{C_2H_2} \\).",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Label the Bond Types\nDrag the correct bond label—Single, Double or Triple—onto the Lewis structures of CH₄ (methane), C₂H₄ (ethene) and C₂H₂ (ethyne).\nDraggable Items\nSingle\nDouble\nTriple\nDrop Zones\nCH₄ – Lewis structure\nC₂H₄ – Lewis structure\nC₂H₂ – Lewis structure\nTip:\nCount shared electron pairs: 1 pair = single, 2 pairs = double, 3 pairs = triple bond.\nCheck Answers\nResults\n// Drag and drop functionality\n const draggableItems = document.querySelectorAll('.draggable-item');\n const dropZones = document.querySelectorAll('.drop-zone');\n const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n const feedbackArea = document.getElementById('feedbackArea');\n const feedbackContent = document.getElementById('feedbackContent');\n \n // Drag and drop event listeners\n draggableItems.forEach(item => {\n item.addEventListener('dragstart', handleDragStart);\n item.addEventListener('dragend', handleDragEnd);\n });\n \n dropZones.forEach(zone => {\n zone.addEventListener('dragover', handleDragOver);\n zone.addEventListener('drop', handleDrop);\n zone.addEventListener('dragenter', handleDragEnter);\n zone.addEventListener('dragleave', handleDragLeave);\n });\n \n function handleDragStart(e) {\n e.target.classList.add('opacity-50');\n e.dataTransfer.setData('text/plain', e.target.dataset.id);\n }\n \n function handleDragEnd(e) {\n e.target.classList.remove('opacity-50');\n }\n \n function handleDragOver(e) {\n e.preventDefault();\n }\n \n function handleDragEnter(e) {\n e.preventDefault();\n e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n }\n \n function handleDragLeave(e) {\n e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n }\n \n function handleDrop(e) {\n e.preventDefault();\n const dropZone = e.target.closest('.drop-zone');\n dropZone.classList.remove('border-green-500', 'bg-green-50');\n \n const itemId = e.dataTransfer.getData('text/plain');\n const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n \n if (draggedItem && dropZone) {\n dropZone.appendChild(draggedItem);\n dropZone.querySelector('.text-center').style.display = 'none';\n }\n }\n \n // Check answers functionality\n checkAnswersBtn.addEventListener('click', () => {\n const results = [];\n dropZones.forEach(zone => {\n const label = zone.getAttribute('data-id');\n const item = zone.querySelector('.draggable-item');\n if(item){\n const category = item.getAttribute('data-category');\n if(\n (label === 'zone-1' && category === 'single') ||\n (label === 'zone-2' && category === 'double') ||\n (label === 'zone-3' && category === 'triple')\n ){\n results.push(`<p class=\"text-green-600\">Correct match for ${label.replace('zone-','Zone ')}</p>`);\n }else{\n results.push(`<p class=\"text-red-600\">Incorrect match for ${label.replace('zone-','Zone ')}</p>`);\n }\n }else{\n results.push(`<p class=\"text-yellow-600\">No label placed in ${label.replace('zone-','Zone ')}</p>`);\n }\n });\n feedbackArea.classList.remove('hidden');\n feedbackContent.innerHTML = results.join('');\n });",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Covalent vs Ionic Compounds",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Covalent Compounds\nLow melting and boiling points.\nDo not conduct electricity.\nSoft, volatile solids or liquids.\nWeak intermolecular forces between molecules.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Ionic Compounds\nHigh melting and boiling points.\nConduct electricity when molten or in solution.\nHard and brittle solids.\nStrong electrostatic forces between ions.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Why Covalent Bonding Makes Carbon Special",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Catenation\nCarbon bonds to itself, forming long chains, rings and networks that act as versatile frameworks.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Tetravalency\nFour valence electrons let carbon form four strong covalent bonds with many elements, ensuring stability.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Diverse Compounds\nThanks to catenation and tetravalency, carbon creates millions of compounds, powering life and modern industry.",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nIMAGE_SEARCH: 'organic molecules collage diagram for education'\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Covalent bond forms when atoms share electrons to attain a stable octet.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Carbon achieves this by making single (C–C), double (C=C) or triple (C≡C) bonds.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Resulting covalent compounds are low-melting, non-conductive and often gaseous, liquid or soft solid.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Carbon’s covalent versatility underpins organic chemistry, powering fuels, polymers and biomolecules.",
"image_description": ""
}
]
}
]