View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Covalent Bonding in Carbon\nWhere shared electrons craft the backbone of life.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "What is a Covalent Bond?\nCovalent Bond\nA covalent bond forms when two atoms share one or more electron pairs, allowing each to achieve a stable outer shell.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Why Does Carbon Form Covalent Bonds?\n1\nElectronic Configuration 2,4\nCarbon has four valence electrons in the 2s and 2p orbitals.\n2\nEnergy Hurdle\nLosing or gaining four electrons needs huge energy, so ionic routes are unfavourable.\n3\nSharing for Stability\nBy sharing four electrons with other atoms, carbon completes its octet and forms covalent bonds.\nPro Tip:\nLink carbon’s 2,4 configuration to its need to share—this is the key to understanding organic chemistry.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Single, Double & Triple Covalent Bonds of Carbon\nSingle Bond (C–H in CH\n4\n)\nShares 1 electron pair (2 e⁻) with another atom.\nOnly σ-bond present; free rotation possible.\nLongest and weakest among the three bond types.\nDouble & Triple Bonds\nDouble: 2 shared pairs (1 σ + 1 π); C=C in C\n2\nH\n4\n.\nTriple: 3 shared pairs (1 σ + 2 π); C≡C in C\n2\nH\n2\n.\nMultiple bonds are shorter, stronger, and restrict rotation.\nKey Similarities\nAll are covalent—electrons are shared, not transferred.\nEach bond helps carbon achieve a stable octet.\nFound widely in organic molecules and biomolecules.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Methane (CH₄): A Single-Bond Example\nElectron-dot and ball-and-stick representations of CH₄\nElectron-Dot and Structural Formula\nCarbon shares one electron with each of four hydrogen atoms.\nThis sharing completes carbon’s octet and each hydrogen’s duet, illustrating covalent bonding.\nKey Points:\nElectron-dot formula: \\( \\mathbf{C} \\) with four shared pairs, each pair between C and H.\nStructural formula: \\( \\mathrm{H{-}C{-}H} \\) shows four single covalent bonds.\nModel highlights how methane achieves stable electronic configuration.",
"image_description": "assets/ch4_electron_dot_ball_stick.png"
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Ethene & Ethyne: Double and Triple Bonds\nElectron-dot & structural views of ethene and ethyne\nHow carbon forms multiple bonds\nIn ethene \\(C_2H_4\\), two shared electron pairs create a C=C double bond between the two carbons.\nIn ethyne \\(C_2H_2\\), three shared pairs form a C≡C triple bond, showing carbon can share six electrons.\nKey Points:\nDouble bond = 4 shared electrons.\nTriple bond = 6 shared electrons.\nMore shared pairs mean fewer hydrogens attach to carbon.",
"image_description": "images/ethene_ethyne_models.png"
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Properties of Covalent Compounds",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Low melting & boiling points\nWeak intermolecular forces let covalent compounds change state at small temperature rises.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Poor electrical conductors\nNo free ions or electrons, so current cannot pass through these compounds.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Insoluble in water\nNon-polar molecules hardly mix with polar water but dissolve well in organic solvents.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Gases, liquids or soft solids\nWeak forces keep particles loosely packed, giving covalent substances soft or volatile forms.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Build a Methane Molecule\nDrag each hydrogen electron into the empty spots around carbon. Carbon must reach 8 electrons; each hydrogen needs 2.\nDraggable Items\nHydrogen Electron 1\nHydrogen Electron 2\nHydrogen Electron 3\nHydrogen Electron 4\nDrop Zones\nCarbon Slot 1\nCarbon Slot 2\nCarbon Slot 3\nCarbon Slot 4\nTip:\nCarbon makes 4 shared pairs; place one pair with each hydrogen.\nCheck Answers\nResults\n// Drag and drop functionality\n const draggableItems = document.querySelectorAll('.draggable-item');\n const dropZones = document.querySelectorAll('.drop-zone');\n const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n const feedbackArea = document.getElementById('feedbackArea');\n const feedbackContent = document.getElementById('feedbackContent');\n \n // Drag and drop event listeners\n draggableItems.forEach(item => {\n item.addEventListener('dragstart', handleDragStart);\n item.addEventListener('dragend', handleDragEnd);\n });\n \n dropZones.forEach(zone => {\n zone.addEventListener('dragover', handleDragOver);\n zone.addEventListener('drop', handleDrop);\n zone.addEventListener('dragenter', handleDragEnter);\n zone.addEventListener('dragleave', handleDragLeave);\n });\n \n function handleDragStart(e) {\n e.target.classList.add('opacity-50');\n e.dataTransfer.setData('text/plain', e.target.dataset.id);\n }\n \n function handleDragEnd(e) {\n e.target.classList.remove('opacity-50');\n }\n \n function handleDragOver(e) {\n e.preventDefault();\n }\n \n function handleDragEnter(e) {\n e.preventDefault();\n e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n }\n \n function handleDragLeave(e) {\n e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n }\n \n function handleDrop(e) {\n e.preventDefault();\n const dropZone = e.target.closest('.drop-zone');\n dropZone.classList.remove('border-green-500', 'bg-green-50');\n \n const itemId = e.dataTransfer.getData('text/plain');\n const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n \n if (draggedItem && dropZone) {\n dropZone.appendChild(draggedItem);\n dropZone.querySelector('.text-center').style.display = 'none';\n }\n }\n \n // Check answers functionality\n checkAnswersBtn.addEventListener('click', () => {\n feedbackArea.classList.remove('hidden');\n const filled = Array.from(dropZones).every(zone => zone.querySelector('.draggable-item'));\n feedbackContent.innerHTML = filled ? \n '<p class=\"text-green-600\">Great job! The electron-dot structure is complete.</p>' : \n '<p class=\"text-red-600\">Some slots are still empty. Try again!</p>';\n });",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Multiple Choice Question\nQuestion\nWhich statement best explains why carbon rarely forms C\n4+\nor C\n4−\nions?\n1\nCarbon’s nucleus is too small.\n2\nToo much energy is needed to lose or gain four electrons.\n3\nCarbon already possesses a stable octet.\n4\nCarbon has no valence electrons.\nHint:\nThink about the energy required to remove or add four electrons to carbon’s outer shell.\nSubmit Answer\nCorrect!\nYes. Removing or adding four electrons needs huge energy, so carbon shares electrons and forms covalent bonds instead.\nIncorrect\nRemember: shifting four electrons demands very high energy. Carbon avoids this by sharing electrons.\nconst correctOption = 1;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('slide-09-a3b9c1-submitBtn');\n const feedbackCorrect = document.getElementById('slide-09-a3b9c1-feedbackCorrect');\n const feedbackIncorrect = document.getElementById('slide-09-a3b9c1-feedbackIncorrect');\n \n let selectedOption = null;\n \n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n \n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n \n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways: Covalent Bonding in Carbon\nMinimalistic carbon atom icon with glowing shared-electron pairs\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Covalent bond: two atoms share one or more electron pairs.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Carbon (2,4) shares four electrons, creating four covalent bonds.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Single, double and triple bonds share 1, 2, 3 electron pairs respectively.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Methane, ethene and ethyne show single, double and triple bonds.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Covalent substances melt easily and seldom conduct electricity.",
"image_description": ""
}
]
}
]