Transcript: Circles_20250701_063122.html

View and copy the extracted transcript JSON

Back to Files

Narration Generator

Generate narration from your transcript

Leave empty to use default narration settings. Use this to customize the narration approach.

[
  {
    "slide": 1,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Definition of Circle",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Circle",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "A circle is the set of all points that are exactly the same distance (the radius) from one fixed point (the centre).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Find the centre first; any straight line from it to the curve is a radius.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 2,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Arc vs Chord",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Circle diagram showing an arc (curved) and a chord (straight).",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/2558/images/c28393a344f1aca89c22af0301c0dfb3.png"
      },
      {
        "fragment_index": 2,
        "text_description": "What’s the difference?\nBoth terms describe how the same two points on a circle are connected.\nKnowing which is which lets you talk about circle parts accurately.\nKey Points:\nArc – curved slice of the circumference between two points.\nChord – straight line segment joining the same two points inside the circle.\nEvery diameter is a chord; it is simply the longest possible one.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 3,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Arc Length Formula",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Central angle θ and radius r define the arc.",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/img/lp/study_content/lp/1/11/4/182/651/1249/1237/21-5-09_LP_Vandana_Phy_1.11.4.4.2.4_srav_SS_html_m162ce79c.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Formula (θ in degrees)\nArc length is the distance along the curved edge between two points on a circle.\nUse \\( \\text{Arc Length} = 2\\pi r \\times \\frac{\\theta}{360^\\circ} \\) to calculate it when θ is measured in degrees.\nKey Points:\nθ is the central angle in degrees.\n\\( \\frac{\\theta}{360^\\circ} \\) gives the fraction of the full circle.\nMultiply this fraction by the circumference \\( 2\\pi r \\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 4,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Multiple Choice Question\nSubmit Answer\nconst correctOption = 1;\n        const answerCards = document.querySelectorAll('.answer-card');\n        const submitBtn = document.getElementById('submitBtn');\n        const feedbackCorrect = document.getElementById('feedbackCorrect');\n        const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n\n        let selectedOption = null;\n\n        answerCards.forEach((card, index) => {\n            card.addEventListener('click', () => {\n                answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n                card.classList.add('border-blue-500', 'bg-blue-50');\n                selectedOption = index;\n            });\n        });\n\n        submitBtn.addEventListener('click', () => {\n            if (selectedOption === null) return;\n\n            if (selectedOption === correctOption) {\n                feedbackCorrect.classList.remove('hidden');\n                feedbackIncorrect.classList.add('hidden');\n            } else {\n                feedbackIncorrect.classList.remove('hidden');\n                feedbackCorrect.classList.add('hidden');\n            }\n        });",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Question\nSelf-check: Which statement is true about circles?",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "1\n(a) Every arc is a chord.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "2\n(b) A chord can pass through the centre.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "3\n(c) Arc length is always 2πr.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "4\n(d) A radius is longer than a diameter.",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "Hint:\nThink of the chord that becomes the diameter when it passes through the centre.",
        "image_description": ""
      },
      {
        "fragment_index": 7,
        "text_description": "Correct!\nA chord through the centre is called the diameter, the longest chord of the circle.",
        "image_description": ""
      },
      {
        "fragment_index": 8,
        "text_description": "Incorrect\nReview circle facts: chords join two points on the circle, and the diameter is the special chord through the centre.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 5,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Sectors Explained",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Circle showing a minor and major sector",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/img/lp/study_content/editlive_lp/75/2012_06_18_11_10_41/5.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Major vs Minor Sector\nA sector is a slice of a circle bordered by two radii and their arc.\nKnowing the size of the slice helps you spot which type it is.\nKey Points:\nSmaller slice (central angle < 180°) → minor sector.\nRemaining part of the circle → major sector.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 6,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Segments Explained",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Chord AB creates a minor segment.",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/img/lp/study_content/lp/1/12/15/240/942/1882/2090/LP_1.12.1.11.2.5_UV_SU_SS_html_13fd7bfd.gif"
      },
      {
        "fragment_index": 2,
        "text_description": "What is a Segment?\nA segment is the part of a circle cut off by a chord.\nIt looks like a slice or bite removed, bounded by the chord and the arc.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\nChord – straight line joining two points on the circle.\nCurved edge of the segment is an arc.\nSegments are named minor (small) or major (large).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 7,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Area of Segment",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Circle segment illustration",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/media.slid.es/uploads/2813393/images/11678342/Asset_13.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Segment Area Formula (radians)\nA segment is the part of a circle between a chord and its arc.\nUse the formula below whenever the central angle is measured in radians.\nKey Points:\nArea \\(= \\dfrac{1}{2} r^{2} (\\theta - \\sin \\theta)\\)\n\\(\\theta\\) is the central angle in radians.\nConvert degrees to radians before applying the formula.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 8,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Multiple Choice Question\nconst correctOption = 1;\n    const answerCards = document.querySelectorAll('.answer-card');\n    const submitBtn = document.getElementById('slide-09-a3c5f2-submitBtn');\n    const feedbackCorrect = document.getElementById('slide-09-a3c5f2-feedbackCorrect');\n    const feedbackIncorrect = document.getElementById('slide-09-a3c5f2-feedbackIncorrect');\n\n    let selectedOption = null;\n\n    answerCards.forEach((card, index) => {\n      card.addEventListener('click', () => {\n        answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n        card.classList.add('border-blue-500', 'bg-blue-50');\n        selectedOption = index;\n      });\n    });\n\n    submitBtn.addEventListener('click', () => {\n      if (selectedOption === null) return;\n\n      if (selectedOption === correctOption) {\n        feedbackCorrect.classList.remove('hidden');\n        feedbackIncorrect.classList.add('hidden');\n      } else {\n        feedbackIncorrect.classList.remove('hidden');\n        feedbackCorrect.classList.add('hidden');\n      }\n    });",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Question\nθ = 270°. Which sector of the circle is larger?",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "1\nMinor sector",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "2\nMajor sector",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Hint:\nA minor sector spans less than 180°.",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "Submit Answer",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "Correct!\nYes. 270° is more than half a circle, so it forms the major sector.",
        "image_description": ""
      },
      {
        "fragment_index": 7,
        "text_description": "Incorrect\nCheck again: a minor sector is ≤ 180°, so 270° cannot be minor.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 9,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Alternate Segment",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Angle between tangent and chord equals angle in opposite arc.",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/s3.amazonaws.com/media-p.slid.es/uploads/2766134/images/11662301/pasted-from-clipboard.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Alternate Segment Theorem\nIn circle theorems, this rule links a tangent–chord angle to an angle inside the circle.\nRecognising this pair allows you to find unknown angles quickly.\nKey Points:\nAngle between a tangent and its chord at the point of contact.\nEquals the angle the same chord subtends in the alternate (opposite) segment.\nUse it to spot equal angles when solving circle problems.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 10,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Angle at Centre",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Central angle is twice the corresponding circumferential angle.",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/2533/images/bc3f1d9006c0304d1e7e17e5a3eeff65.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Centre Angle is Double\nIn circle geometry, the angle at the centre is special.\nIt is always twice the angle at the circumference on the same arc.\nKey Points:\n\\( \\angle AOB = 2 \\times \\angle ACB \\)\nBoth angles subtend the same chord or arc AB.\nUse this circle theorem to find unknown angles quickly.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 11,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Same Segment Angles",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Angles in the same segment are equal.",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/s3.amazonaws.com/media-p.slid.es/uploads/2766134/images/11662301/pasted-from-clipboard.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Circle Theorem\nCircle theorem: Angles in the same segment are equal.\nAny two angles subtended by the same chord on the same side share the same measure.\nKey Points:\nApplies to any chord of a circle.\nBoth angles lie on the circumference, same side of the chord.\nHandy for proving equal angles in geometric proofs.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 12,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Semicircle Right Angle",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "The angle in a semicircle is always 90°.",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/2614/images/d6580c5b7c37743fce80472ed5ce8bf6.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Diameter creates a right angle at the circumference\nIn any circle, a diameter subtends a right angle at every point on the circumference.\nThis circle theorem is often called the “angle in a semicircle” rule.\nKey Points:\nEndpoints of the diameter act as a chord.\nAny point on the semicircle forms a 90° angle.\nUseful for spotting right triangles in circle problems.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 13,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Perpendicular Bisector",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/2614/images/d6580c5b7c37743fce80472ed5ce8bf6.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Circle Theorem: Perpendicular from Centre Bisects Chord\nDraw radius \\(OX\\) so that \\(OX \\perp AB\\). \\(O\\) is the centre of the circle.\nRight-angled triangles \\(\\triangle OAX\\) and \\(\\triangle OBX\\) are congruent because \\(OA = OB\\) and \\(OX\\) is common.\nTherefore \\(AX = XB\\). The perpendicular from the centre splits the chord equally, confirming the theorem.\nKey Points:\nLine starts at circle centre \\(O\\).\nMeets chord at 90°.\nForms two congruent right-angled triangles.\nHence, chord is bisected: \\(AX = XB\\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 14,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Cyclic Quadrilateral",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Opposite angles A & C and B & D form straight lines.",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/3371/images/0c724be9e09992cd4728f4c4c6ddfcd4.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Opposite Angles Are Supplementary\nA quadrilateral with all four vertices on one circle is called cyclic.\nCircle theorem: each pair of opposite interior angles sums to \\(180^{\\circ}\\).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\nAll four vertices lie on the same circle.\n\\(∠A + ∠C = 180^{\\circ}\\).\n\\(∠B + ∠D = 180^{\\circ}\\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 15,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Tangent Facts",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/media.slid.es/uploads/2813393/images/11681442/Asset_21.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Two Essential Tangent Properties\nAfter this slide, you should be able to state both key tangent properties clearly.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\nThe tangent is perpendicular to the radius at the point of contact.\nTangents drawn from the same external point are equal in length.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 16,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Tangent–Secant Rule",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Tangent PA and secant PBC from point P",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/img/lp/study_content/lp/1/12/15/240/942/1882/2090/LP_1.12.1.11.2.5_UV_SU_SS_html_13fd7bfd.gif"
      },
      {
        "fragment_index": 2,
        "text_description": "Power of a Point\nFrom external point P, draw tangent PA and secant PBC to the circle.\nPower of a Point states the square of the tangent equals the external part times the whole secant.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\nRule: \\(PA^{2}=PB\\cdot PC\\)\nUse it to find any missing length when two are known.\nValid for every circle sharing the same external point.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 17,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Secant–Secant Rule",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Intersecting secants from point P",
        "image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/media.slid.es/uploads/2866791/images/12097776/11.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Power of a Point result\nFrom an outside point P, draw two secants \\(PAB\\) and \\(PCD\\) to the circle.\nThe Power of a Point theorem states the products of their parts are equal.\nKey Points:\n\\(PA \\cdot PB = PC \\cdot PD\\)\nProduct of near and far parts of each secant is equal.\nQuickly find unknown lengths using the relation.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 18,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Key Takeaways\nRecap of essential facts about circles.",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Parts & Symbols\nRadius, diameter, chord and arc describe circle parts; central angle θ locates the arc.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Key Formulas\nArc length \\(L = 2\\pi r \\frac{\\theta}{360^\\circ}\\); sector area \\(A = \\frac12 r^2 \\theta\\) (θ in radians).",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Angle Theorems\nAngle at centre = 2 × inscribed angle; same-segment angles equal; semicircle angle is 90°.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Tangents & Secants\nTangent ⟂ radius; equal tangents from one point; tangent-secant and secant-secant products relate lengths.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 19,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Multiple Choice Question\nconst correctOption = 2;\n    const answerCards = document.querySelectorAll('.answer-card');\n    const submitBtn = document.getElementById('submitBtn');\n    const feedbackCorrect = document.getElementById('feedbackCorrect');\n    const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n\n    let selectedOption = null;\n\n    answerCards.forEach((card, index) => {\n      card.addEventListener('click', () => {\n        answerCards.forEach(c => c.classList.remove('border-blue-500','bg-blue-50'));\n        card.classList.add('border-blue-500','bg-blue-50');\n        selectedOption = index;\n      });\n    });\n\n    submitBtn.addEventListener('click', () => {\n      if (selectedOption === null) return;\n\n      if (selectedOption === correctOption) {\n        feedbackCorrect.classList.remove('hidden');\n        feedbackIncorrect.classList.add('hidden');\n      } else {\n        feedbackIncorrect.classList.remove('hidden');\n        feedbackCorrect.classList.add('hidden');\n      }\n    });",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Question\nA chord subtends 50° at the circumference. What angle does the same chord subtend at the centre?",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "1\n25°",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "2\n50°",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "3\n100°",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "4\n150°",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "Hint:\nRecall: the angle at the centre is twice the angle at the circumference for the same chord.",
        "image_description": ""
      },
      {
        "fragment_index": 7,
        "text_description": "Submit Answer",
        "image_description": ""
      },
      {
        "fragment_index": 8,
        "text_description": "Correct!\nGreat job! By the Angle at the Centre Theorem, 2 × 50° = 100°.",
        "image_description": ""
      },
      {
        "fragment_index": 9,
        "text_description": "Incorrect\nReview the Angle at the Centre Theorem: central angle = 2 × angle at circumference.",
        "image_description": ""
      }
    ]
  }
]