Transcript: Circle_20250704_044520.html

View and copy the extracted transcript JSON

Back to Files

Narration Generator

Generate narration from your transcript

Leave empty to use default narration settings. Use this to customize the narration approach.

[
  {
    "slide": 1,
    "fragments": [
      {
        "fragment_index": 1,
        "text_description": "What Is a Circle?",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Circle",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "A circle is the set of all points in a plane that lie at a fixed distance, called the radius, from a fixed point, called the centre.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "centre → fixed point  |  radius → common distance",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 2,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Chord vs Arc",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Chord (straight) and Arc (curved) joining the same endpoints",
        "image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/owrleLmAGshxwGTx6VoTGBpVdgGQgY7PSWc4F5Tw.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Spot the difference\nA chord is a straight line segment joining two points on a circle.\nAn arc is the curved part of the circle’s circumference between the same two points.\nKey Points:\nChord lies inside the circle; arc lies on the circumference.\nChord length is a straight distance; arc length follows the curve.\nEach chord defines two arcs: a minor arc (< 180°) and a major arc (> 180°).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 3,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Measuring Arc Length",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "\\[s = r\\,\\theta\\]",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Variable Definitions",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "\\(s\\)\nArc length (same unit as \\(r\\))",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "\\(r\\)\nRadius of circle",
        "image_description": ""
      },
      {
        "fragment_index": 5,
        "text_description": "\\( \\theta \\)\nCentral angle (radians)",
        "image_description": ""
      },
      {
        "fragment_index": 6,
        "text_description": "Applications",
        "image_description": ""
      },
      {
        "fragment_index": 7,
        "text_description": "Angle vs Length\nBigger \\( \\theta \\) means a longer arc—think of cutting a larger pizza slice.",
        "image_description": ""
      },
      {
        "fragment_index": 8,
        "text_description": "Wheel Distance\nA wheel rolls distance \\(s\\) when it spins through \\( \\theta \\) radians with radius \\(r\\).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 4,
    "fragments": []
  },
  {
    "slide": 5,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Sector of a Circle",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Highlighted minor sector of a circle",
        "image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/0d6nAfX2XdnO6X1LYTLTeTfXYPnHz6RkMpSZQss9.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Definition & Everyday Picture\nA sector is the region bounded by two radii and the arc between them.\nThink of a pizza slice or the sweep of a speedometer needle.\nKey Points:\nMinor sector: angle < \\(180^\\circ\\) — smaller part of the circle.\nMajor sector: angle > \\(180^\\circ\\) — larger complementary part.\nFraction relation: major sector = \\(1 -\\) (minor sector fraction).",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 6,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Angle at Centre Rule",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "",
        "image_description": "https://asset.sparkl.ac/pb/sparkl-vector-images/img_ncert/XkmG6IIgToMNs0HJ7fDgO2y4Ln78OBUYqDyv1eTI.png"
      },
      {
        "fragment_index": 2,
        "text_description": "Key Theorem\nFor a given arc, the angle at the centre is always twice the angle at the circumference on that arc.\nExample: if the circumference angle is \\(30^{\\circ}\\), predict the central angle, then enter it in the quiz.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Key Points:\nCentral angle \\(= 2 \\times\\) circumference angle.\nNotation: \\( \\angle AOB = 2\\,\\angle ACB \\) on arc \\(AB\\).\nRatio 2 : 1 holds for every arc of a circle.",
        "image_description": ""
      }
    ]
  },
  {
    "slide": 7,
    "fragments": [
      {
        "fragment_index": -1,
        "text_description": "Key Takeaways",
        "image_description": ""
      },
      {
        "fragment_index": 1,
        "text_description": "Circle = Locus of Points\nRevision: all points \\(r\\) units from a fixed centre form a circle.",
        "image_description": ""
      },
      {
        "fragment_index": 2,
        "text_description": "Chord, Arc & Sector\nRevision: a chord is a straight cut, its curve is an arc, both bound a sector.",
        "image_description": ""
      },
      {
        "fragment_index": 3,
        "text_description": "Arc Length & Central-Angle\nKey idea: \\( \\frac{L}{2\\pi r} = \\frac{\\theta}{360^\\circ} \\) links length to angle.",
        "image_description": ""
      },
      {
        "fragment_index": 4,
        "text_description": "Next Steps\nApply these basics to tangents, cyclic quadrilaterals and angle properties next.",
        "image_description": ""
      }
    ]
  }
]