View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "First Atom Thinkers",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Earliest Atomic Idea\nSmallest, indivisible particle imagined by Indian sage Maharishi Kanad (Parmanu) and Greek philosopher Democritus (atomos).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Key Characteristics:\nMaharishi Kanad (≈500 BC) named the uncuttable unit of matter\nParmanu\n.\nGreek thinkers Democritus & Leucippus called the same concept\natomos\n, meaning “indivisible”.\nIdeas were philosophical; no experiments, so science embraced atoms only in the 18\nth\ncentury.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Example:\nKanad said a grain of rice can be halved repeatedly until only one\nParmanu\nremains.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": 1,
"text_description": "Mass Never Disappears",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Law of Conservation of Mass",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Law of Conservation of Mass: in a closed reaction, reactant mass equals product mass. \n Step into the virtual lab: weigh a sealed flask, tilt to mix two solutions, watch them react. \n Re-weigh; if the digital balance is unchanged within ±0.01 g, mass has been conserved. \n Proving this satisfies the learning outcome—demonstrate that mass never disappears.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Constant Proportions",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Law of Constant Proportions",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Joseph Proust stated: In any compound, elements combine in a fixed mass ratio, whatever the sample’s source or preparation.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Water always splits into \\(1:8\\) (H:O) by mass. Ammonia consistently shows \\(14:3\\) (N:H). Quiz: 28 g N pairs with\n6 g H\n.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Dalton’s Atomic Theory\nDalton (1808) turned chemical laws into a testable model. His six postulates explain tiny atoms, their conservation, and constant composition.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nAtoms Exist\nAll matter is made of extremely small, discrete particles called atoms.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nElement Identity\nAtoms of the same element share identical mass & properties; atoms of different elements differ.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nIndivisible in Reactions\nAtoms cannot be created, divided or destroyed in chemical changes, upholding the Law of Conservation of Mass.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "4\nSimple Whole Ratios\nAtoms combine in simple whole-number ratios to form compounds, foreshadowing the Law of Multiple Proportions.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "5\nFixed Composition\nA given compound always contains the same kinds and numbers of atoms, explaining the Law of Constant Composition.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "6\nRearrangement Only\nChemical reactions merely rearrange atoms; total number and kinds of atoms remain constant.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": 1,
"text_description": "Symbols & Naming",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "",
"image_description": "https://sparkl-vector-images.s3.ap-south-1.amazonaws.com/presentation_images/asset.sparkl.me/pb/presentation/3572/images/97ffbc050dceb1ab934b5d754ebc2bdf.png"
},
{
"fragment_index": 3,
"text_description": "Write Symbols the IUPAC Way\nEach element is represented by one or two letters to ensure universal understanding.\nRule: first letter capital, second lowercase. Al is aluminium; AL would be wrong.\nSome symbols keep Latin roots: Fe, Na, K.\nCheck: what is wrong with ‘PB’ for lead?",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Key Points:\nOne or two letters only\nFirst letter capital, second lowercase\nLatin names explain Fe, Na, K",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Atomic Mass Unit",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "\\[1\\,\\text{u} = \\frac{1}{12}\\,m({}^{12}\\text{C}) \\quad ; \\quad A_r = \\frac{m_{\\text{atom}}}{1\\,\\text{u}}\\]",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Variable Definitions\n\\(1\\,\\text{u}\\)\nAtomic mass unit\n\\(m({}^{12}\\text{C})\\)\nMass of one carbon-12 atom\n\\(A_r\\)\nRelative atomic mass\n\\(m_{\\text{atom}}\\)\nMass of the given atom",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Applications\nQuick Comparison\nExpresses atomic masses without huge kilogram numbers.\nExample\nOxygen atom mass ≈ 16 u, so \\(A_r(\\text{O}) \\approx 16\\).",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "How Many Atoms?\nDrag each molecule into the bin that matches its atomicity. O₂ is diatomic; O₃ is triatomic and counts as polyatomic.\nCheck Answers\nResults",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Draggable Items",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Ar",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "O₂",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "P₄",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "S₈",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Drop Zones",
"image_description": ""
},
{
"fragment_index": 8,
"text_description": "Monatomic (1)",
"image_description": ""
},
{
"fragment_index": 9,
"text_description": "Diatomic (2)",
"image_description": ""
},
{
"fragment_index": 10,
"text_description": "Tetraatomic (4)",
"image_description": ""
},
{
"fragment_index": 11,
"text_description": "Polyatomic (>4)",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Tip:\nBins glow when the correct molecule is dropped.",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Ions & Valency",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Ion\nAn atom or group carrying net charge after losing or gaining electrons.\nKey Characteristics:\nCations: \\( \\text{Na}^+, \\text{Ca}^{2+} \\) — positive, formed by electron loss.\nAnions: \\( \\text{Cl}^- , \\text{SO}_4^{2-} \\) — negative, formed by electron gain.\nValency equals electrons lost, gained or shared; shows the combining “arms”.\nExample:\n\\( \\text{Na}^+ + \\text{Cl}^- \\rightarrow \\text{NaCl} \\). Each ion uses one valency arm.",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Multiple Choice Question\nCorrect!\nRight—3 oxide ions balance 2 aluminium ions, giving electrically neutral \\( \\text{Al}_2\\text{O}_3 \\).\nIncorrect\nRemember: charges become subscripts; the final compound must have zero net charge.\nconst correctOption = 1;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('submitBtn');\n const feedbackCorrect = document.getElementById('feedbackCorrect');\n const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n\n let selectedOption = null;\n\n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n\n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n\n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Question\nAluminium (metal) combines with oxide ion (non-metal). Using the criss-cross charge-balancing rule, which formula is correct?",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "1\nAlO",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "2\nAl₂O₃",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "3\nAl₃O₂",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "4\nAlO₃",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Hint:\nCriss-cross the magnitudes of Al³⁺ and O²⁻ to obtain subscripts.",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "Submit Answer",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nAtoms to Equations in a Flash",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Two Universal Laws\nMass is conserved, and elements always combine in fixed proportions—bedrock for every balanced equation.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Dalton’s Six Postulates\nMatter is made of indivisible atoms that combine in simple ratios, conserve identity, and form compounds with whole-number counts.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Symbols & Masses\nChemical symbols abbreviate element names; atomic masses quantify one atom, letting us count atoms by weighing.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Molecules, Ions & Valency\nAtoms join as neutral molecules or charged ions; valency tells how many bonds each atom can form.",
"image_description": ""
}
]
}
]