View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Atoms and Molecules\nWhere invisible particles create visible wonders",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "Philosophical Roots of the Atom\nParmanu / Atom\nThe ultimate, indivisible unit of matter proposed by early Indian and Greek philosophers.\nKey Characteristics:\nExample:\nThese early notions inspired later scientists like Dalton to develop a testable atomic theory.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "c. 500 BC – Maharishi Kanad: endless division ends at Parmanu.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Democritus & Leucippus called similar particles “atomos”, meaning indivisible.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Concepts were philosophical; no experimental proof existed until the 18th century.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": -1,
"text_description": "Law of Conservation of Mass\nConservation of Mass\nDuring a chemical reaction, total mass remains constant; matter is neither created nor destroyed, so mass before and after reaction is equal in a closed system.\nKey Characteristics:\nMass of reactants equals mass of products.\nBalance readings stay unchanged before & after reaction.\nRequires a sealed container to prevent loss or gain of matter.\nExample:\nMixing barium chloride and sodium sulphate solutions in a corked flask shows identical total mass on the balance before and after mixing.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Multiple Choice Question\nQuestion\nIn a sealed container, 5 g of calcium reacts with 2 g of oxygen. Using the mass data and the law of conservation of mass, what should be the combined mass of products?\n1\n6 g\n2\n5 g\n3\n7 g\n4\n3 g\nHint:\nTotal mass stays constant in a closed system: add the masses of all reactants.\nSubmit Answer\nCorrect!\nWell done! 5 g + 2 g = 7 g, so the products must also weigh 7 g.\nIncorrect\nRe-check the law of conservation of mass: product mass equals the sum of reactant masses (5 g + 2 g).\nconst correctOption = 2;\n const answerCards = document.querySelectorAll('.answer-card');\n const submitBtn = document.getElementById('submitBtn');\n const feedbackCorrect = document.getElementById('feedbackCorrect');\n const feedbackIncorrect = document.getElementById('feedbackIncorrect');\n \n let selectedOption = null;\n \n answerCards.forEach((card, index) => {\n card.addEventListener('click', () => {\n answerCards.forEach(c => c.classList.remove('border-blue-500', 'bg-blue-50'));\n card.classList.add('border-blue-500', 'bg-blue-50');\n selectedOption = index;\n });\n });\n \n submitBtn.addEventListener('click', () => {\n if (selectedOption === null) return;\n \n if (selectedOption === correctOption) {\n feedbackCorrect.classList.remove('hidden');\n feedbackIncorrect.classList.add('hidden');\n } else {\n feedbackIncorrect.classList.remove('hidden');\n feedbackCorrect.classList.add('hidden');\n }\n });",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Law of Constant Proportions\nFixed Mass Ratio Rule\nIn every pure compound, constituent elements combine in the same definite proportion by mass, independent of source or preparation.\nKey Characteristics:\nExample:\nWater: H : O = 1 : 8 | Ammonia: N : H = 14 : 3 — ratios never vary.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Holds true for every sample of a given compound.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Elemental mass ratio remains constant (definite proportions).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Provides the foundation for consistent chemical formulae.",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": -1,
"text_description": "Dalton’s Atomic Theory\nBuilding on the laws of conservation of mass and constant proportions, Dalton explained chemical combination with six clear postulates.\nPro Tip:\nIndivisible atoms keep total mass conserved (law of conservation of mass), while fixed whole-number ratios secure constant proportions in every compound.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nMatter is Atomic\nAll matter consists of minute, discrete particles called atoms.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nIndivisible in Reactions\nAtoms are neither created nor destroyed during chemical reactions; they only rearrange.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nAtoms of an Element are Identical\nEvery atom of the same element has identical mass and chemical properties.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "4\nDifferent Elements, Different Atoms\nAtoms of distinct elements differ in mass and other properties.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "5\nWhole-Number Ratios\nAtoms combine in simple, small, whole-number ratios to form compounds.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "6\nFixed Composition\nIn any compound, the relative number and kinds of atoms remain constant.",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "How Small is an Atom?\nAtomic-force microscope image of silicon; scale bar highlights the nanometre range.\nThe Nanometre Scale\nA nanometre (nm) is one-billionth of a metre: \\(1\\text{ nm}=1\\times10^{-9}\\text{ m}\\).\nAbout a million atoms stacked would form a sheet as thin as this page.\nKey Points:\nHydrogen atom ≈ \\(1\\times10^{-10}\\text{ m}\\) (0.1 nm)\nWater molecule ≈ \\(1\\times10^{-9}\\text{ m}\\) (1 nm)\nGrain of sand ≈ \\(1\\times10^{-4}\\text{ m}\\) (0.1 mm)",
"image_description": "images/afm_silicon_surface.jpg"
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Modern Symbols of Elements\nChemical Symbol\nIUPAC-approved one- or two-letter abbreviation for an element. First letter is uppercase; second, if present, lowercase.\nKey Characteristics:\nExample:\nSymbol set: H, Al, Co, Na, Fe, K demonstrates naming rules.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Single-letter symbols for certain elements, e.g., H, O, C.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Two-letter symbols echo English names, e.g., Al, Co.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Latin-derived symbols: Na (natrium), Fe (ferrum), K (kalium).",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Match the Element to Its Symbol\nDrag Hydrogen, Carbon, Sodium, Chlorine and Iron onto their matching symbols — H, C, Na, Cl and Fe.\nDraggable Items\nHydrogen\nCarbon\nSodium\nChlorine\nIron\nDrop Zones\nH\nC\nNa\nCl\nFe\nCheck Answers\nResults\n// Drag and drop functionality\n const draggableItems = document.querySelectorAll('.draggable-item');\n const dropZones = document.querySelectorAll('.drop-zone');\n const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n const feedbackArea = document.getElementById('feedbackArea');\n const feedbackContent = document.getElementById('feedbackContent');\n \n // Drag and drop event listeners\n draggableItems.forEach(item => {\n item.addEventListener('dragstart', handleDragStart);\n item.addEventListener('dragend', handleDragEnd);\n });\n \n dropZones.forEach(zone => {\n zone.addEventListener('dragover', handleDragOver);\n zone.addEventListener('drop', handleDrop);\n zone.addEventListener('dragenter', handleDragEnter);\n zone.addEventListener('dragleave', handleDragLeave);\n });\n \n function handleDragStart(e) {\n e.target.classList.add('opacity-50');\n e.dataTransfer.setData('text/plain', e.target.dataset.id);\n }\n \n function handleDragEnd(e) {\n e.target.classList.remove('opacity-50');\n }\n \n function handleDragOver(e) {\n e.preventDefault();\n }\n \n function handleDragEnter(e) {\n e.preventDefault();\n e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n }\n \n function handleDragLeave(e) {\n e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n }\n \n function handleDrop(e) {\n e.preventDefault();\n const dropZone = e.target.closest('.drop-zone');\n dropZone.classList.remove('border-green-500', 'bg-green-50');\n \n const itemId = e.dataTransfer.getData('text/plain');\n const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n \n if (draggedItem && dropZone) {\n dropZone.appendChild(draggedItem);\n dropZone.querySelector('.text-center').style.display = 'none';\n }\n }\n \n // Check answers functionality\n checkAnswersBtn.addEventListener('click', () => {\n feedbackArea.classList.remove('hidden');\n feedbackContent.innerHTML = '<p class=\"text-green-600\">Answers checked! Review your results above.</p>';\n });",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Atomic Mass Unit (u)\n\\[1 \\text{ \\,u } = \\frac{1}{12}\\, m_{^{12}\\mathrm{C}}\\]\nVariable Definitions\nApplications\nSource: NCERT Science 9, Chapter 3",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "u\nunified atomic mass unit\nWhy Carbon-12?\nStable, abundant isotope; gives most relative atomic masses near whole numbers.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "m\n^{12}C\nmass of one carbon-12 atom\nSample Relative Masses\nH ≈ 1 u | O ≈ 16 u | Na ≈ 23 u",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "^{12}C\ncarbon-12 isotope (6 p, 6 n)\nUse in Calculations\nForms the base for molar masses and stoichiometric predictions in chemistry.",
"image_description": ""
}
]
},
{
"slide": 11,
"fragments": [
{
"fragment_index": -1,
"text_description": "Molecules and Atomicity\nAtomicity\nA molecule is the smallest particle able to exist alone. The number of atoms it holds is called its atomicity.\nKey Characteristics:\nMonoatomic – single atom molecules; He, Ar\nDiatomic – two atoms bonded; O₂, N₂, Cl₂\nPolyatomic – three or more atoms; P₄, S₈\nExample:\nHe (atomicity 1), O₂ (atomicity 2) and P₄ (atomicity 4) illustrate increasing atomicity.",
"image_description": ""
}
]
},
{
"slide": 12,
"fragments": [
{
"fragment_index": -1,
"text_description": "Ions and Valency\nIon\nAn ion is an atom or group of atoms that carries a net charge after losing or gaining electrons.\nKey Characteristics:\nCations (+) form by electron loss, e.g., Na\\(^{+}\\), Ca\\(^{2+}\\).\nAnions (−) form by electron gain, e.g., Cl\\(^{-}\\), O\\(^{2-}\\).\nPolyatomic ions act as single units, e.g., \\( \\text{SO}_4^{2-} \\), \\( \\text{NH}_4^{+} \\).\nValency is the combining capacity; for simple ions it equals the magnitude of charge.\nKnowing valency helps predict chemical formulae.\nExample:\nNa has valency 1 and O has valency 2, so they combine as \\( \\text{Na}_2\\text{O} \\).",
"image_description": ""
}
]
},
{
"slide": 13,
"fragments": [
{
"fragment_index": -1,
"text_description": "Rules for Writing Chemical Formulae\nUse valency to build neutral formulae for binary and polyatomic compounds.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nList ions & valencies\nFor a binary compound, write the cation first and anion next with their valencies, e.g. \\( \\text{Mg}^{2+} \\) and \\( \\text{Cl}^{-} \\).",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nApply cross-over rule\nCross the valency numbers to subscripts, reduce to the smallest ratio: \\( \\text{Mg}^{2+} \\) with \\( \\text{Cl}^{-} \\) gives \\( \\text{MgCl}_2 \\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nUse brackets for polyatomic ions\nIf more than one polyatomic ion is needed, enclose it in brackets before adding the subscript: \\( \\text{Ca}^{2+} \\) and \\( \\text{OH}^{-} \\) → \\( \\text{Ca(OH)}_2 \\).",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Pro Tip:\nAlways verify that total positive and negative charges cancel; the final chemical formula must be electrically neutral.",
"image_description": ""
}
]
},
{
"slide": 14,
"fragments": [
{
"fragment_index": -1,
"text_description": "Build the Formula!\nDrag ions, balance charges and build Na₂O, Al₂O₃ and CaCO₃ to master chemical formula writing.\nDraggable Items\n{% for item in draggable_items %}\n{{ item.label }}\n{% endfor %}\nDrop Zones\n{% for zone in drop_zones %}\n{{ zone.label }}\n{% endfor %}\nTip:\nEnsure total positive charge equals total negative charge for a neutral compound.\nCheck Answers\nResults\n// Drag and drop functionality\n const draggableItems = document.querySelectorAll('.draggable-item');\n const dropZones = document.querySelectorAll('.drop-zone');\n const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n const feedbackArea = document.getElementById('feedbackArea');\n const feedbackContent = document.getElementById('feedbackContent');\n \n draggableItems.forEach(item => {\n item.addEventListener('dragstart', handleDragStart);\n item.addEventListener('dragend', handleDragEnd);\n });\n \n dropZones.forEach(zone => {\n zone.addEventListener('dragover', handleDragOver);\n zone.addEventListener('drop', handleDrop);\n zone.addEventListener('dragenter', handleDragEnter);\n zone.addEventListener('dragleave', handleDragLeave);\n });\n \n function handleDragStart(e) {\n e.target.classList.add('opacity-50');\n e.dataTransfer.setData('text/plain', e.target.dataset.id);\n }\n \n function handleDragEnd(e) {\n e.target.classList.remove('opacity-50');\n }\n \n function handleDragOver(e) {\n e.preventDefault();\n }\n \n function handleDragEnter(e) {\n e.preventDefault();\n e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n }\n \n function handleDragLeave(e) {\n e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n }\n \n function handleDrop(e) {\n e.preventDefault();\n const dropZone = e.target.closest('.drop-zone');\n dropZone.classList.remove('border-green-500', 'bg-green-50');\n \n const itemId = e.dataTransfer.getData('text/plain');\n const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n \n if (draggedItem && dropZone) {\n dropZone.appendChild(draggedItem);\n dropZone.querySelector('.text-center').style.display = 'none';\n }\n }\n \n checkAnswersBtn.addEventListener('click', () => {\n feedbackArea.classList.remove('hidden');\n feedbackContent.innerHTML = '<p class=\"text-green-600\">Answers checked! Review your results above.</p>';\n });",
"image_description": ""
}
]
},
{
"slide": 15,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nAtoms, Molecules & Chemical Combination",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Law of Conservation of Mass\nTotal mass of reactants equals total mass of products in every reaction.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Law of Constant Proportions\nA compound always contains the same elements in a fixed mass ratio.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Dalton’s Atomic Theory\nIndivisible atoms combine in simple whole-number ratios, explaining both laws.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Atomic Mass Unit (u)\nAtom masses are measured relative to 1/12 of a carbon-12 atom.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Molecules & Ions\nAtoms join as neutral molecules or charged ions to build all matter.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Writing Chemical Formulae\nBalance element valencies or ion charges to obtain correct formulas.",
"image_description": ""
}
]
}
]