View and copy the extracted transcript JSON
Back to FilesGenerate narration from your transcript
[
{
"slide": 1,
"fragments": [
{
"fragment_index": -1,
"text_description": "Atoms and Molecules\nFrom invisible particles to measurable realities.",
"image_description": ""
}
]
},
{
"slide": 2,
"fragments": [
{
"fragment_index": -1,
"text_description": "What is an Atom?\nAtom\nThe fundamental unit of an element. It is the smallest particle that retains all the element’s chemical properties.",
"image_description": ""
}
]
},
{
"slide": 3,
"fragments": [
{
"fragment_index": 1,
"text_description": "What is a Molecule?",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Molecule",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "A molecule is two or more atoms joined by chemical bonds, acting as one independent unit.",
"image_description": ""
}
]
},
{
"slide": 4,
"fragments": [
{
"fragment_index": -1,
"text_description": "Atom vs. Molecule\nAtom\nMolecule\nKey Similarities",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Fundamental unit of an element.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Composed of protons, neutrons, and electrons.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Indivisible by chemical reactions.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Exists alone or joins others to form molecules.",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Two or more atoms chemically bonded.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Smallest unit of a compound or elemental gas.",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "Has fixed composition and atom ratio.",
"image_description": ""
},
{
"fragment_index": 8,
"text_description": "Acts as an independent particle in reactions.",
"image_description": ""
},
{
"fragment_index": 9,
"text_description": "Both are electrically neutral overall.",
"image_description": ""
},
{
"fragment_index": 10,
"text_description": "Obey the laws of chemical combination.",
"image_description": ""
},
{
"fragment_index": 11,
"text_description": "Together make up all matter around us.",
"image_description": ""
}
]
},
{
"slide": 5,
"fragments": [
{
"fragment_index": -1,
"text_description": "Atomicity\nAtomicity\nAtomicity is the number of atoms present in one molecule of an element or compound.\nKey Classifications:\nExample:\nHe is monoatomic, O₂ is diatomic, P₄ is polyatomic.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Monoatomic\n: single atom molecules – He, Ne",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Diatomic\n: two atoms per molecule – O₂, N₂",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Polyatomic\n: three or more atoms – O₃ (tri-atomic), P₄ (tetra-atomic)",
"image_description": ""
}
]
},
{
"slide": 6,
"fragments": [
{
"fragment_index": 1,
"text_description": "Law of Conservation of Mass",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Mass is Conserved",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Mass can neither be created nor destroyed during a chemical reaction; reactant mass equals product mass.",
"image_description": ""
}
]
},
{
"slide": 7,
"fragments": [
{
"fragment_index": -1,
"text_description": "Law of Constant Proportions\nProust’s Law\nAny chemical compound has its elements in a fixed mass ratio, no matter the sample’s origin or amount.\nAlso called Proust’s Law (1799).\nSource: NCERT, Grade 10 Science",
"image_description": ""
}
]
},
{
"slide": 8,
"fragments": [
{
"fragment_index": -1,
"text_description": "Conservation of Mass: Experimental Illustration\nSealed flask weighed before and after mixing the solutions.\nHow the Closed-Flask Test Works",
"image_description": "sealed_flask_experiment.png"
},
{
"fragment_index": 1,
"text_description": "A sealed flask holds separate NaCl and AgNO₃ solutions; its total mass is recorded before mixing.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "After shaking, AgCl precipitate forms; the flask’s mass remains unchanged, proving mass is conserved.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "Key Points:\nClosed system prevents matter escape.\nInitial mass equals final mass.\nConfirms the law of conservation of mass.",
"image_description": ""
}
]
},
{
"slide": 9,
"fragments": [
{
"fragment_index": -1,
"text_description": "Match the Element Symbols\n{% if intro %}\nDrag each chemical symbol to its correct element name to master common periodic table symbols.\n{% endif %}\nDraggable Items\n{% for item in draggable_items %}\n{{ item.label }}\n{% endfor %}\nDrop Zones\n{% for zone in drop_zones %}\n{{ zone.label }}\n{% endfor %}\n{% if tip %}\nTip:\nSymbols are one or two letters; the first letter is always uppercase.\n{% endif %}\n{{ check_answers_text or 'Check Answers' }}\nResults\n// Drag and drop functionality\n const draggableItems = document.querySelectorAll('.draggable-item');\n const dropZones = document.querySelectorAll('.drop-zone');\n const checkAnswersBtn = document.getElementById('checkAnswersBtn');\n const feedbackArea = document.getElementById('feedbackArea');\n const feedbackContent = document.getElementById('feedbackContent');\n \n // Drag and drop event listeners\n draggableItems.forEach(item => {\n item.addEventListener('dragstart', handleDragStart);\n item.addEventListener('dragend', handleDragEnd);\n });\n \n dropZones.forEach(zone => {\n zone.addEventListener('dragover', handleDragOver);\n zone.addEventListener('drop', handleDrop);\n zone.addEventListener('dragenter', handleDragEnter);\n zone.addEventListener('dragleave', handleDragLeave);\n });\n \n function handleDragStart(e) {\n e.target.classList.add('opacity-50');\n e.dataTransfer.setData('text/plain', e.target.dataset.id);\n }\n \n function handleDragEnd(e) {\n e.target.classList.remove('opacity-50');\n }\n \n function handleDragOver(e) {\n e.preventDefault();\n }\n \n function handleDragEnter(e) {\n e.preventDefault();\n e.target.closest('.drop-zone').classList.add('border-green-500', 'bg-green-50');\n }\n \n function handleDragLeave(e) {\n e.target.closest('.drop-zone').classList.remove('border-green-500', 'bg-green-50');\n }\n \n function handleDrop(e) {\n e.preventDefault();\n const dropZone = e.target.closest('.drop-zone');\n dropZone.classList.remove('border-green-500', 'bg-green-50');\n \n const itemId = e.dataTransfer.getData('text/plain');\n const draggedItem = document.querySelector(`[data-id=\"${itemId}\"]`);\n \n if (draggedItem && dropZone) {\n dropZone.appendChild(draggedItem);\n dropZone.querySelector('.text-center').style.display = 'none';\n }\n }\n \n // Check answers functionality\n checkAnswersBtn.addEventListener('click', () => {\n // Implementation for checking answers would go here\n feedbackArea.classList.remove('hidden');\n feedbackContent.innerHTML = '<p class=\"text-green-600\">Answers checked! Review your results above.</p>';\n });",
"image_description": ""
}
]
},
{
"slide": 10,
"fragments": [
{
"fragment_index": -1,
"text_description": "Writing Chemical Formulae\nUse valency rules to write accurate chemical formulae.\nPro Tip:\nEnsure total positive and negative charges balance—this confirms the formula obeys valency rules.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nWrite element symbols\nPlace the metal symbol first and the non-metal second.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nNote & cross valencies\nWrite each valency above its symbol, then criss-cross the numbers to the opposite element.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nSimplify subscripts\nDivide crossed numbers by their common factor to get the simplest whole-number ratio.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "4\nWrite final formula\nWrite symbols with simplified subscripts; omit subscript 1 to complete the chemical formula.",
"image_description": ""
}
]
},
{
"slide": 11,
"fragments": [
{
"fragment_index": -1,
"text_description": "Calculating Molecular Mass\n\\[ M_{\\text{H}_2\\text{O}} = (2 \\times 1\\,\\text{u}) + (1 \\times 16\\,\\text{u}) = 18\\,\\text{u} \\]\nVariable Definitions\nApplications",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "M\nMolecular mass of the compound (u)",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "n\nNumber of atoms of each element",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "A\nAtomic mass of the element (u)",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "u\nUnified atomic mass unit",
"image_description": ""
},
{
"fragment_index": 5,
"text_description": "Stoichiometry\nCompute reactant and product amounts in chemical equations.",
"image_description": ""
},
{
"fragment_index": 6,
"text_description": "Mass–Mole Conversions\nTranslate grams of a substance into moles using its molecular mass.",
"image_description": ""
},
{
"fragment_index": 7,
"text_description": "Purity Check\nCompare measured mass with theoretical value to assess sample purity.",
"image_description": ""
}
]
},
{
"slide": 12,
"fragments": [
{
"fragment_index": 1,
"text_description": "The Mole Concept",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Mole",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "One mole contains exactly 6.022 × 10²³ entities, called the Avogadro number. It connects microscopic particles to measurable mass in chemistry.",
"image_description": ""
},
{
"fragment_index": 4,
"text_description": "Unit symbol: mol — essential for converting grams to particles and back.",
"image_description": ""
}
]
},
{
"slide": 13,
"fragments": [
{
"fragment_index": -1,
"text_description": "Mole-Mass-Number Conversions\nUse Avogadro’s number and molar mass to switch between mass, moles, and particles.\nPro Tip:\nKeep units visible at every step to avoid conversion errors.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "1\nIdentify Given Mass\nExample: Water sample has 36 g. Note formula H₂O and molar mass 18 g mol⁻¹.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "2\nConvert Mass → Moles\nMoles = mass ÷ molar mass = \\(36\\,\\text{g} \\div 18\\,\\text{g mol}^{-1} = 2\\ \\text{mol}\\).",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "3\nConvert Moles → Particles\nMolecules = moles × \\(6.022\\times10^{23}\\) = \\(2 \\times 6.022\\times10^{23} = 1.2044\\times10^{24}\\).",
"image_description": ""
}
]
},
{
"slide": 14,
"fragments": [
{
"fragment_index": -1,
"text_description": "Key Takeaways\nminimalistic atom network graphic\nThank You!\nWe hope you found this lesson informative and engaging.",
"image_description": ""
},
{
"fragment_index": 1,
"text_description": "Atoms are the smallest units of matter and join to form molecules.",
"image_description": ""
},
{
"fragment_index": 2,
"text_description": "Laws of chemical combination fix the ratio in which atoms unite.",
"image_description": ""
},
{
"fragment_index": 3,
"text_description": "The mole links atomic scale to lab scale: \\(6.022 \\times 10^{23}\\) particles per mole.",
"image_description": ""
}
]
}
]